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EXECUTIVE SUMMARY

Many current traffic management schemes are tested and implemented using traffic
simulation.  An Origin-Destination (OD) matrix is an ideal input for such simulations.
The underlying travel demand pattern produces observed link counts. One could use
these counts to reconstruct the OD matrix.  An offline approach to estimate a static OD
matrix over the peak period for freeway sections using these counts is proposed in this
research. Almost all the offline methods use linear models to approximate the
relationship between the on-ramp and off-ramp counts. Previous work indicates that the
use of a traffic flow model embedded in a search routine performs better than these linear
models. In this research, that approach is enhanced using a microscopic traffic simulator,
AIMSUN, and a gradient-based optimization routine, MINOS, interfaced to estimate an
OD matrix. The problem is highly non-linear and non-smooth, and the optimization
routine finds multiple local minima, but cannot guarantee a global minima. However,
with a number of starting “seed” matrices, an OD matrix with a good fit in terms of
reproducing traffic counts can be estimated. The dominance of the mainline counts in the
OD estimation and an identifiability issue is indicated from the experiments. The quality
of the estimates improves as the specification error, introduced due to the discrepancy
between AIMSUN and the real-world process that generates the on-ramp and off-ramp
counts, reduces.
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Chapter 1 – Introduction

Travel demand estimation is one of the most challenging and interesting procedures in
transportation engineering. The process of demand estimation is an attempt to understand
and predict the behavioral patterns of individuals, and the choices that they make on
routes and trips. Over the years, many techniques have evolved to estimate travel
demands and in different forms.

Traffic management plans require travel demand estimation. Especially under
emergency conditions like accidents, the travel demands are essential to efficiently re-
route the traffic. Many of the traffic management methods are developed and tested using
simulation so there is an added need for travel demand estimation for use in these
simulation applications. Travel demand is also an important element in transportation
network analysis. A combination of the knowledge of traveler behavior and demand are
essential to study/predict the responses to structural changes in the network.

Traditionally the four-step transportation planning process estimates the travel
demands as the number of trip interchanges between traffic zones at a given time in the
trip distribution phase. The result is a trip table that represents the number of trip
interchanges between the various zones. This matrix representation, known as the Origin
Destination (OD) matrix, is the most commonly used form for representing travel
demand. The OD matrix can also be expressed as the percentage of trips that flow from
each origin zone to another destination zone.

Freeways are one of the most important parts of transportation networks.  They
have lower travel times and higher speeds, i.e., a better Level of Service (LOS). This
attracts more vehicles onto them and hence need efficient traffic management systems to
maintain the high LOS. Since travel demand is an important component of all traffic
management schemes, its estimation for freeways becomes very consequential.

On freeways, the on-ramps serve as the inputs (origins) and the off-ramps the
outputs (destinations). One could estimate OD matrices for freeways that depict the
ramp-to-ramp flows. This is very useful information for freeway management strategies
such as ramp metering. Travel demand on a freeway can also be represented as input
flows and turning percentages at off-ramps. This form of demand representation does not
help in traffic re-routing because the destination of a given vehicle is unknown when it
enters the network. Re-routing is generally based on destination, which can be obtained
from an OD matrix. Hence the travel demand estimated as an OD matrix is more useful.

The applications of an OD matrix for efficient freeway control can be explained
as follows. In Figure 1.1, a bottleneck is assumed downstream of ramp 1. If the OD
matrix informs that most of the trips from ramp 2 get off on-ramp 3, then this can be used
to reduce the ramp metering rates of ramps upstream of the bottleneck, i.e., ramp 1 and
ramp 2. In the absence of such information the ramp metering rates of both the ramps will
be reduced when not called for.

Thus it is clear that there is a need for the estimation of the OD matrices, to
improve traffic management techniques. In addition, since many management techniques
are devised, developed, and tested by simulation, these estimated OD matrices are needed
for traffic simulation for development, testing, and the implementation of traffic
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management strategies. Therefore, this research focuses on estimating freeway OD
matrices.

The report has been organized as follows. Chapter 2 is the literature review.
Chapter 3 is a description of the adopted methodology and the related issues. Chapter 4 is
a detailed explanation of the implementation of the method. Chapter 5 explains the
methods used to generate the starting solutions. The test sites and the related results are
described in Chapter 6, and Chapter 7 discusses the conclusions of this research.

 

Ramp 2 Ramp 1 

Ramp 3 

Bottleneck 

Ramp 4 

Figure 1.1 - Application Example 
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Chapter 2 - Literature Review

The earliest techniques for OD estimation were for planning purposes. The OD patterns
between places were an essential requirement for the rational planning of new facilities.
This was done using surveys, the simplest method of OD estimation. In this method, a
random sample of the population was chosen and their travel patterns determined. This
was then extended to the population as a whole. The surveying technique could be direct
or indirect. But these methods had the common drawback of being very labor intensive
and expensive. As time went on, the investment into building new facilities dwindled and
there was disapproval toward spending huge amounts in surveys. Hence there was a
search for cheaper estimation techniques. There is a very comprehensive analysis of the
different survey techniques and the associated accuracy issues in Wills and May (1981).

The first researchers in this area worked on the gravity model. The gravity model
is a very simple and elegant representation of the spatial distribution of trips. It is based
on the analogy to Newton’s gravitational law. There is a detailed description of some
gravity models in Wills and May (1981).  The advantage of using a gravity model was in
the reduction of number of unknowns. But the model did not use all the available
information, so the results were of limited accuracy. The gravity model, when applied to
freeways, is not as efficient as it is more suitable for a more aggregate level.

The link flows on the network is information that is routinely collected. These
link flows are a direct result of the travel patterns of the users. Therefore, it was
hypothesized that the travel patterns can be extracted from the link flows. This shifted the
OD estimation techniques towards using these traffic counts or link flows as inputs. The
network was an important element in the estimation process. The presence of alternate
routes called for knowledge of travel behavior also. In addition, there is a need to include
an assignment technique. However, for one-route networks (freeways, rail transit, and
pipelines) there is no need for an assumption about routing.

The problem
The problem of determining the OD parameters from the traffic counts can be formulated
as follows.

j
i

iij OQb =∑ (2.1)

0.1=∑
j

ijb (2.2)

Where,
bij = proportion of trips from i to j;
Qi = on-ramp counts (origin flows);
Oj = the off-ramp (destination flows).
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Here Qi and Oj can be observed. Equations (2.1) and (2.2) are representations of flow
conservation. Using these equations, one could estimate the OD parameters bij, but there
are not enough equations as variables and there is an under-specification problem. This
issue was addressed in Robillard (1974). Since there are multiple solutions, the methods
focused on estimating a “plausible” or “most likely” OD matrix.
One of the good techniques was the EM (Entropy Maximization). This method can be
explained with the same example as described in Wills and May (1981). Consider a small
freeway section with the flows at the ramps as depicted in the Figure 2.1.

Figure 2.1 – Sample Freeway Section

The problem of the under specification can be clearly seen here.

D1 D2 sum D1 D2 sum
O1 4 2 6 O1 3 3 6
O2 0 2 2 O2 1 1 2
sum 4 4 8 sum 4 4 8

Table 2.1 – Possible Trip Table 1 Table 2.2 – Possible Trip Table 2

D1 D2 sum
O1 2 4 6
O2 2 0 2
sum 4 4 8

Table 2.3 - Possible Trip Table 3

There are only two independent equations, T11 + T12 = 6 and T21 + T22 = 2 and four
unknowns and different trip table tables that satisfy the same equations. As seen in Table
2.1, 2.2, and 2.3. Now under each scenario there is a different combination of vehicles. A
combination is defined as a mapping of each vehicle from the origin to the destination.
Table 2.4 shows one such possible mapping for trip table shown in Table 2.1.

 6 

2 
4 

4 O1 

O2 

D2 

D1 
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O1 Destination O2 Destination

Veh 1 D1 Veh 1 D2

Veh 2 D1 Veh 2 D2

Veh 3 D2

Veh 4 D2

Veh 5 D2

Veh 6 D2

Table 2.4 – A Sample Mapping Pattern for Table 2.1

By altering the destinations of each vehicle another combination can be generated.
Mathematically, using combinatorics, the number of these patterns can be determined.
The maximum number of possible states for each system is given in Equation 2.3.

∏
∏

=

ji
ij

i
i

T

Q

E

,

!

!

(2.3)

The entropy (E) is defined as the number of available maps. The EM method tries
to estimate the OD table that has the maximum entropy.  Van Zuylen and Willumsen
(1979) discuss two methods of estimation using the EM method and the Information
Minimization approach. The main drawback of the EM method is that it relies on the
starting estimate and so there is this need for a good starting solution. Speiss (1987)
approached the problem by the Maximum Likelihood Estimation. He proposes a model
of the same type, however the starting solution is not optional but an essential part of the
estimation. He defines the partially observed OD table cells as Poisson variables with
unknown means, and attempts to estimate the underlying means.

As a parallel concept, the idea of posing the estimation processes as a linear/non-
linear programming program was also being developed. Turnquist and Gur (1979)
proposed to define the problem as a constrained optimization problem. They concluded in
their research that a good start ensured a good result. Martin and Bell (1992) also
proposed a network-programming problem for turning movement estimation at
intersections.

The advent of the continual surveillance techniques resulted in the time series
data for the detector counts. Using these counts, one could estimate an OD matrix (Static
method) or track a time-varying OD matrix (Dynamic method).  Nihan and Davis (1987)
and Nihan and Davis (1991) are examples of the former while Cremer and Keller (1987)
and Ashok (1996) are examples of the latter. The first two methods were statistical
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models to estimate the central tendency of the OD estimates while the other two used a
Kalman filter-based method of tracking the time varying OD matrix.

The general drawback observed by the static methods was that they were very
effective for intersections but not as effective in the case of the freeways.  Davis (1993)
posits the breakdown of the methods occurs because the travel time between the origin
and destination was not just a function of the distance but also of the intermediate traffic
conditions. In addition, the congestion effects also lead to the traffic exiting the off-ramp
to be a mixture of traffic entering the freeway from prior intervals. Davis concluded that
there was a need to incorporate a traffic flow model into the estimation process.

Davis (1993) argued that the freeway traffic flow model can be considered a
Markov population model.  The freeway was broken down into Markovian compartments
with vehicles making random exits based on current compartment population. The
probability of exit under certain assumptions was related to the space mean speed. Using
the number of exiting vehicles in each section, density was calculated. Now, with a
speed-density relationship the speed was tracked dynamically. This was the framework
for STOMAC (STOchastic MACroscopic simulator).

Davis and Yu (1994) used STOMAC to compare four different estimation
methodologies. Two of the methods used, EM (Expectation Maximization) and CAML
(Constrained Approximate Maximum Likelihood) were viewed as quasi-ML methods
that preserve the simplicity of the linear model and are more efficient than the OLS, but
have bias in their estimates. The last technique, NLS (Non-linear Least Squares), differed
in that it included the travel time between the origin and destination pair, unlike the OLS,
EM, and CAML that ignored that term. In this technique, the STOMAC was embedded
into the minimization routine. A starting estimate of the OD matrix was fed into the
minimization routine, STOMAC calculated the error sum of squares, and this process was
iterated until an optimal OD matrix was estimated. They used 50 different data sets.
When compared the statistical properties of the estimates, the NLS estimates were the
most efficient and unbiased. Davis and Kang (1994) had a different version of the traffic
flow model and the results were similar. Davis’s (1993) approach was an application of
the above method.

Most of the above methods have some form of linear models that approximate the
relationship between the entry and exit volumes. Davis and Yu (1994) indicated that the
non-linear model (traffic flow model) outperforms the other methods (based on linear
models). After the overview of all the developed techniques, the OD estimation approach
that had a traffic simulator embedded in the minimization process seems to be the most
attractive choice. This research will further that idea by using an improved traffic flow
model and a robust optimization process.

The method adopted in this research enhances the method in Davis and Yu
(1994). This research will use a microscopic traffic simulator, AIMSUN, and a state-of-
the-art optimization routine, MINOS. The appeal of the method of using a simulator
embedded in a search routine is its simplicity. The computation time related to the
method will restrict this method to be an offline OD proportions estimation process.
Since the method estimates one OD matrix, it will be a static OD estimation process.
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Chapter 3 – Methodology

3.1 Introduction

Traffic on a network can be pictured as a system where vehicles arrive randomly and
traverse certain links of the network and exit the system after a certain time period. This
movement of the vehicle from an origin (entry point) to a destination (exit location) is
defined as a trip. The arrivals follow a random process and the routes taken are a function
of the driver’s preferences. The travel times on the chosen route are a function of the
traffic conditions. The traffic conditions are a result of the different choices that the
drivers make and the actual driving characteristics (traffic flow model). The choice-
making process and the actual driving characteristics represent the travel behavior.

If every vehicle in the system is tracked and their start and the end points
collected, the aggregated information can be represented using a trip-table, an elegant
representation of the travel demand. This table represents the underlying traffic pattern
for the network. In addition to the traffic pattern, if the travel behavior is known, the
traffic conditions on the network can be reproduced because they are a direct result of the
traffic pattern and travel behavior.

Extending this idea to freeway traffic, the inputs to the system would be a traffic
flow model and an OD matrix. On a freeway, there is only one route for every possible
trip, so there is no route selection process. The traffic conditions on a freeway are
characterized by the on-ramp counts, off-ramp counts and speeds. If we have an
appropriate traffic flow model and the OD matrix, the traffic conditions can be
reproduced.

If one of the inputs in the system is unknown, but the outputs and other inputs
known, the unknown input can be estimated by matching a set of outputs corresponding
to a set of inputs to the actual conditions. The OD estimation problem is an example of
such a case. The OD matrix is unknown but the traffic conditions—the counts, speeds,
and density are known. If an appropriate traffic model is used, the OD matrix can be
estimated by trying to reproduce the traffic conditions on the freeway. In other words,
when using the traffic flow model, a search for the OD matrix is done in the feasible
space of OD matrices and a particular matrix chosen based on its ability to reproduce the
traffic conditions. Hence the OD matrix estimation process can be defined as an
optimization problem that searches for the optimal OD matrix that minimizes the
deviations of the predicted and the actual traffic conditions.

3.2 The Minimization Problem

An OD matrix is always defined over a time interval. The travel demand for a region or a
network is defined over a specific time interval, for example, three hours, one day, a
week etc. The OD matrix changes with the time scale and region. For a given site
(freeway), the OD matrix is time varying. The morning and evening peak have certain
characteristics. Now, this underlying traffic pattern can be estimated as a time-varying
estimate set over a certain time period or one estimate for a shorter time period. The OD
estimation is focused on the peak periods because of higher traffic volumes.
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An OD matrix can be represented in different forms. The standard form is the trip
table, where every cell entry Tij is the number of trips made from origin i to destination j.
It can also be represented as a percentage matrix, where every cell bij is the percentage of
trips originating at origin i that will end up at destination j. The latter definition is chosen
for reasons explained in the following section. The trip table is the product of the
productions at the origins (on-ramp counts) and the percentage OD matrix. Now, using
this trip table and a traffic flow model, the traffic conditions can be predicted.

An OD matrix is generally specified for a large geographical region. The area is
divided into zones and the OD matrix has trips to and from these zone centroids. For a
freeway, the origins are the on-ramps and the destinations are the off-ramps. On most
freeways, the OD matrix is upper triangular as the downstream on-ramps cannot feed
upstream off-ramps. Also the first origin will be the upstream mainline and the last
destination will be the downstream mainline. The input for this system would the on-
ramp counts and the percentage OD matrix and the traffic conditions that could be
matched would be the off-ramp/mainline counts.

If it is assumed that this percentage OD matrix is constant over the peak period,
the OD estimation problem can be defined as the search for that optimal matrix that
minimizes the deviations from the actual off-ramp counts. The OD matrix, when defined
as a percentage matrix, has to satisfy the constraints that the row sums have to add to 1.0,
implying that the sum of trips originating from an on-ramp have to match the on-ramp
counts. Therefore the OD estimation problem can be defined as a linearly-constrained
minimization problem.

In this setup, the upstream mainline and the downstream mainline are treated as
the first on-ramp and the last off-ramp respectively. Hence the OD estimation searches
for that optimal OD matrix that best matches the off-ramp counts including the
downstream mainline. The downstream mainline counts are typically an order or two
higher in magnitude than the off-ramp counts. In order to avoid the minimization process
from being dominated by the downstream mainline, the sum of the error terms are
weighted based on their magnitude. Using the inverse of the standard deviations of the
counts as the weighting terms scales the variances equally and removes the domination of
the downstream mainline counts. The Non Linear Programming Problem (NLP) can be
formally defined as

NLP: Minimize ∑∑ −
j t

tjtjj OOw 2)ˆ(

Subject to 0.1=∑
i

ijb

0.0 ≤ bij ≤ 1.0
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Where,

tjO - Actual off-ramp counts at ramp j in time slice t;

tjÔ – Predicted off-ramp counts at ramp j in time slice t;

wj – the weight for the ramp j = inverse of standard deviation of tjO ;

i – Origin index;
j – Destination index;
t – Time index.

The solution to the above NLP is the estimate of the OD matrix B that matches the actual
off-ramp counts with the greatest accuracy.

3.3. The Time Invariant OD Matrix

The trip table is constantly changing over every time slice because the inputs (on-ramp
counts) are time varying. The justification of the assumption of a time invariant OD
matrix needs to be addressed. Can the OD matrix be time invariant? This section justifies
the assumption of a time invariant OD matrix resulting in a time variant trip table.

Consider Figure 3.1. It is a schematic that explains the underlying process that
relates the on-ramp counts and the off-ramp counts. At a very abstract level (Level 1), the
whole process can be assumed to be a Data generation mechanism that takes the on-ramp
counts as inputs and gives the off-ramp counts as the outputs. This process can then be
further broken down at Level 2, which involves the creation of the trip table and a Traffic
Flow mechanism. At the lowest level, the traffic flow process can be broken down as a
process that takes in the trip table and calculates the routes and the choice making process
and then assigns the trips to the network and propagates the vehicles through the network.
This is a conceptual model of the actual process that relates the on-ramp counts and the
off-ramp counts.

The OD estimation process involves calculation of the trip table from the
observed on-ramp and off-ramp counts. For the best performance of the method, the
process as defined in Level 3 must be replicated. The real world process cannot be
exactly reproduced because of its complex nature and so a satisfactory approximation is
required. The level of satisfaction is related to the need for the approximation and its
simplicity. Therefore in the OD estimation process, approximations to the above
processes are used.

Approximation to a process is done by making certain assumptions about the
process based on the available information and the knowledge at hand. Any assumption
made should follow the principle of parsimony or Occam’s razor. It is a logical principle
attributed to a medieval philosopher, William of Occam, which states that while trying to
explain a phenomenon one must always choose the simplest explanation, one that calls
for the smallest leaps of logic.

As shown in Figure 3.1, there are two components that are approximated in the
data generation mechanism. The first is related to the creation of the trip table from the
on-ramp counts and the second is the traffic flow model. The latter has been
approximated with a microscopic traffic simulator. The first step that relates to the
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creation of trip tables from on-ramp counts is approximated by using a time-invariant
percentage OD matrix and the on-ramp counts. The choice of the approximation is related
to its simplicity and appeal to the intuitive sense of the process and is in line with the
above-mentioned principle of parsimony.

As described in Chapter 2, the OD estimation process in one time slice has an
identifiability problem as there are more unknowns than equations. Therefore, even over
additional time slices, if the assumption is made that the OD matrix is different for each
time slice it leads to the same problem. To solve the problem we assume there is a time
invariant OD matrix over some sub-set of the multiple time slices. Applying Occam’s
razor, the simplest assumption of the OD matrix being constant over all the time slices is
adopted in this research. The following section describes the theory behind such an
approximation.
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Before proceeding with the discussion, some concepts on multinomial probability
distribution are reviewed. The multinomial distribution is the extension of the binomial
distribution. Basically, each random experiment has multiple outcomes, say m. Each
individual outcome Xi

 (i = 1, 2... m) has an associated probability pi with it. In other
words, if the same experiment were to be repeated N times, the N outcomes could be any
combination of the m possible outcomes and, if there are ni observations of outcome Xi,

then the joint probability distribution would be as given in equation (3.1).

mn

m

nn

m

mm
ppp

nnn
N

NKpppXKXXP Λ
Λ

= 2

21

21

2121

1

!!!
!

);,;,( (3.1)

This idea can be extended to an OD matrix. Consider one row, k, in the OD
matrix. The cell entries bkj that represent the percentage of trips from on-ramp k to off-
ramp j can be interpreted as the probability that a trip originating at k ends up at j. Now,
when a vehicle enters a freeway at on-ramp k the OD matrix entry bkj corresponds to the
probability that the vehicle will end up in destination j. In this setup, there are as many
outcomes as there are destinations and the associated probabilities for each of the
outcomes are the OD matrix row entries bkj.

Consider the following experiment. At any given time interval, for every arriving
vehicle at on-ramp k, using the multinomial probabilities given by the OD matrix row
entries bkj, a destination is assigned. Based on this assignment, the trip table cell entries
Tkj are updated. The number of trials for this experiment is the on-ramp count Qj. The
same experiment is repeated with all the rows of the OD matrix. As a result, a trip table
for that time interval is generated.

The same set of experiments can be repeated over all the time slices using the
same OD matrix and the time varying on-ramp counts. Since the on-ramp counts serve as
the number of trials for each individual experiment and they are time variant, the
resulting trip table is also time variant.

Using the above argument, the time sliced trip-tables can be visualized as
outcomes corresponding to multiple experiments, using the OD matrix as the multinomial
probabilities and the on-ramp counts as the number of trials. Therefore, the time varying
trip table can be explained as the random outcome of an experiment using a set of fixed
multinomial probabilities and time varying number of trials. Thus, using the definition of
the OD matrix as a percentage matrix, the idea of a time invariant OD matrix is posited.
Since this research focuses on estimation of these percentage OD matrices, all further
references to an OD matrix will correspond to this definition, unlike the traditional trip
table.

3.4 Issues with Estimation

The main issue with estimation is identifiability. The classic example is trying to solve 10
equations with 15 unknowns. Clearly, the solution does not exist as there is not enough
information in the system to estimate the unknowns. The OD matrix problem in one time
slice has the same nature (as discussed in the literature review). There are always more
unknowns than the equations. However, by adding observations, the system is over-
specified. Since the OD estimation problem has been set up as an over-specified system,
it is expected to have enough information to estimate the OD matrix.
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Once it has been established that the solution exists and that it can be estimated,
the question of whether the current estimation method can arrive at the estimate needs to
be addressed. In this setup, the method is a search over the feasible space using a traffic
flow model. The two essential components are the traffic flow model and the search
routine.

The traffic flow model takes the OD matrix and the on-ramp counts and generates
the off-ramp counts. It can be pictured as a map between these inputs (on-ramp counts)
and the outputs (off-ramp counts). Mathematically, it can be defined as a map between
the OD matrix and on-ramp counts to the off-ramp counts. If this map is one-to-one, then
it assures a unique solution to the minimization problem. Also, the traffic flow model
needs to be satisfactory in reproducing the traffic conditions and the map must be well-
behaved for search routine to converge on a solution.

Given that the map and the traffic flow model have the required properties, the
OD matrix can be estimated if the search routine is efficient and robust. Typically most
methods are gradient-based and use the Newtonian methods. Based on the nature of the
objective function (convex, concave or mixed), there will be local and global optimal
solutions. Most gradient-based methods result in local optimal solutions and are functions
of the starting solution. Hence, the robustness in arriving at the global optimal solution
irrespective of the starting solution is a function of the nature of the objective function.

3.5 The Method

Based on the above sections, the methodology can be defined as a process of using a
traffic flow model and a search routine to match the off-ramp counts for a freeway
section over the peak period in order to arrive at a time invariant OD matrix estimate that
corresponds to the underlying multinomial probabilities.

The off-ramp counts are an aggregate effect of people’s choices and driving
characteristics. If the traffic flow model can capture these effectively, the confidence in
the OD estimate will be higher. AIMSUN is a proven traffic simulator and, since it is
accessible and is easy to use, it is chosen as the traffic flow model.
MINOS is a state-of-the-art optimization search routine that can solve a variety of NLP.
Since this is a proven, efficient search routine and is accessible, it is chosen as the search
routine.

If the OD estimation results in a set of estimates none in which have an exact
match, the choice of the best solution could be made based on the closeness to the actual
underlying OD matrix. In most cases, the OD matrix is unknown. This problem can be
overcome by using a simulated data set. First, an OD matrix and on-ramp counts are
assumed and the traffic is simulated in AIMSUN and the off-ramp counts, are observed.
Using these simulated off-ramp counts and the assumed on-ramp counts the OD matrix is
estimated. If there are multiple estimates, the best solution can be chosen with reference
to the assumed OD matrix.

The OD matrix is evaluated based on its ability to reproduce the off-ramp counts.
But the usefulness of the estimate is related to its ability to reproduce the traffic
characteristics of the system as a whole. Typically, performance is evaluated using the
system-wide Measure of Effectiveness (MOEs), like Total Travel, Total Travel Time,
Average Speed and Total delay. Hence, the OD estimates will be evaluated not only by
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their ability to reproduce the off-ramp counts and the initial OD matrix, but also these
system- wide MOE’s. This is an important requirement, because in most cases the
underlying OD matrix is unknown but these statistics can be collected. Therefore, the
performance of the estimates can be evaluated even though the underlying OD matrix is
unknown.

Multiple starting solutions (seeds) will be used to overcome the local minima
problems as MINOS is a gradient-based algorithm. A seed generation process is also
added to the OD estimation method to provide different starting solutions. Chapter 5
describes the different seed generation methods used. The methodology is schematically
shown in Figure 3.2.



15



16



17

Chapter 4 – Implementation

The OD estimation method as described in Figure 3.2 has two working components, the
simulator and the optimization routine. The method has been implemented as a
FORTRAN77 program, which interfaces these two components to complete the OD
estimation process. This chapter is a discussion of the features of these two components
and their interface.

4.1 Simulation Component – AIMSUN

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-urban
Networks) is a microscopic traffic simulator that models the behavior of each vehicle in
the network, using several vehicle behavior models such as car-following and lane-
changing models.  AIMSUN uses elements whose states change discretely and
continuously over the simulated period.  Some of the elements with short continuous
variation of states are vehicles and detectors and some of the elements with discrete
variation of states are traffic signals and entrance points.

The input data required by the AIMSUN is composed of three categories:
Network Description, Traffic Control Plans, and Traffic Demand Data. Network
Description contains information about network geometry, layout of sections, and
junctions and location of detectors. Traffic Control Plans are different types of traffic
controls like traffic signals, give-way signs and ramp metering. Traffic demand data can
defined in two different ways in AIMSUN—by the traffic flows at the sections or by an
OD matrix.

The Traffic Network Model in AIMSUN consists of a set of road sections
connected by nodes.  These sections and nodes may be connected to centroids, which can
be considered as sources and sinks of traffic. Therefore the network can be coded using
sections and nodes. Using these basic elements—sections, centroids, and nodes—a
network can be built in AIMSUN. There is an easy-to-use GUI–TEDI (graphical Traffic
Editor) that is used to build the networks. For the freeway sections built in this research,
centroids are dedicated to each on-ramp and off-ramp, serving as either origins or
destinations for convenience, although the same centroid can be used as a source and
sink.

AIMSUN provides different tools for modeling real time traffic controls.  It is
capable of modeling traffic signals, give-way signs, and ramp metering.  In this research
for the freeway sections, no control was implemented. Depending on the available form
of traffic demand data, two types of simulations are possible using AIMSUN: one is
based on input traffic flows and turning percentages and the other is based on OD
matrices.

The traffic conditions to be simulated defined by an OD matrix should be for each
time slice and for each vehicle type. This is generated using an external program that
creates the trip table in the AIMSUN-readable format for the simulation. Also, a suitable
headway model for generating the vehicles must be specified.  In this research since there
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are multiple simulations with the same data set, to reduce the stochastic variations in the
model, the constant headway model is used.

Once a vehicle is generated, the assignment of the vehicle to the objects
connected to the centroid can be done in two ways: (1) probabilistic or (2) path to
destination-dependent. In the probabilistic approach, the user specifies a proportion of
vehicles taking each one of the possible objects connected to the centroid. In the
destination-dependant approach, the system decides to which object each vehicle must be
assigned. For freeway sections built in this research, there is a centroid for every on-ramp
and off-ramp. Hence, both the above-mentioned approaches lead to the same result.
When the simulation is based on OD matrices and route or paths, it is called the Route-
Based simulation model. In this model, vehicles are fed into the network according to the
demand data defined as an OD matrix and they drive along the network following a
certain path in order to reach their destination. There are two modes of Route-Based
simulation—Fixed and Variable—depending on whether or not new routes are to be
calculated periodically during the simulation. For freeway sections, there is only one
route from each on-ramp to off-ramp so there is no need for a route choice model. The
data related to a network is stored as a folder by the name of the network file. The
specific information of the network is saved in ASCII format. This feature was exploited
to build the interface between AIMSUN and MINOS.

4.2 The Optimization Component – MINOS

4.2.1 Introduction

A typical minimization problem can be represented as

Minimize F(x)
Subject to Ax < b

Where the objective function F(x) depends on variables x that are being minimized and
the constraints on x, defined by the constants A and b. The dimension of x and b, n and m
respectively, define the size of the problem, i.e., the number of free variables and the
number of the constraints that are involved in the problem. In addition, the functional
form of the objective function also defines the solution procedure. In theory, the nature of
the problem is linear or non-linear (based on objective function), constrained or
unconstrained (based on whether A  is defined), and, based on the form of A,  it is
bounded or unbounded.

If the dimension of the problem is small, for example, 1 or 2, the technique of
graphically solving the problem can be used, as the objective function and the constraints
will be lines, curves, or surfaces and the minima can be visually located. However, if the
objective function is complex, it will be a relatively hard task.
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Traditionally the gradients help to get a feel for the shape of the function and can
be used as a guide to the minimization process. It is known that at minima/maxima, the
gradients vanish and the sign of the second derivative determines the nature of that point.
Most optimization techniques are gradient-based because, once a point where the gradient
vanishes is located, the optimal point is also known. The gradient-based methods are
numerous and vary with the type of the problem.  However, the gradient-based methods
rely on the existence of the gradient, and their efficiencies are higher if the objective
function is smooth. Hence, if the nature of the objective function is not suitable for a
gradient-based algorithm, a non-gradient based method is needed.

The non-gradient based methods are fewer in numbers than the gradient-based
methods but vary in nature significantly. The simplest of nongradient-based methods is
the grid search technique, but it is time consuming. The more advanced nongradient-
based search techniques are Nelder-Mead, Genetic Algorithm, and Simulated Annealing.
As dimensions of the problem (n, m) get larger, matrices are used to represent the
information efficiently. In such cases the Jacobian and the Hessian, the matrix
representation of the higher order derivatives, are used.  Therefore, in all large-scale
optimization problems, matrices are an essential part of the data handling.

If the objective function and the constraints were linear, the simplex algorithm
can be used. This is an efficient technique to solve linear problems.  However, for the
non-linear cases there are multiple methods like the reduced gradient, sequential
quadratic programming, or a quasi-Newton method to solve the problem.

Most of the methods start at a given point (a feasible point). Then in the n-
dimensional space, pick a direction of descent using the gradients in the n-dimensional
space. The methods do a line-search along the chosen direction and terminate either at a
bound or a constraint. At this new point, the process of choosing a descent direction and
then a line search are repeated, until a convergence criterion is satisfied. The essential
part of the optimization is the gradient, which will be completely and accurately defined
if the actual functional form of the objective function is known. In most cases, the
gradient cannot be defined explicitly and so the numerical approximations are used to
compute the gradient of the objective function. This can be equated to tweaking each of
the n-coordinates of the starting point by a small amount and then computing the gradient
with respect to that parameter. In other words, the gradient is approximated as shown in
equation (4.1).

′F (x) =
Δx→0
Lim

F(x + Δx) − F(x)
Δx

≈
F(x + Δx) − F(x)

Δx
(4.1)

Where,
x –the vector of current coordinates
Δx –the change in the current coordinates.

The change is made to one variable at a time.  The premise is that Δx is small
enough to approximate the limit. Therefore, the step-size Δx is very crucial as the
numerical approximations can be different based on the nature of F(x).

Given the gamut of methods, the choice of one over the other is based on
preference related to access, knowledge, usage etc. MINOS is one of the state-of-the-art
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programs for minimization of large scale problems.  It was selected since it was
accessible and easy to use it was selected. The algorithm implemented in MINOS for
minimization of linearly constrained problems is the reduced gradient algorithm. In the
following section the salient features of MINOS are discussed and the implementation of
the algorithm is explained.

4.2.2 MINOS

MINOS is a FORTRAN-based computer system designed to solve large-scale
optimization expressed in the following standard form

NLP: Minimize F(x) + cTx + dTy
Subject to f(x) + A1y = b1

A2(x) + A3y = b2

l < x, y < u

Where,
Vectors – c, d, b1, b2, l and u and matrices A1, A2 and A3 are constants, F(x) is a smooth
function and f(x) is a vector of smooth functions. Ideally the first derivatives need to be
provided by the user for F(x) and f(x), otherwise MINOS numerically estimates them.

The objective function as defined here has linear and non-linear variables. In
addition, the constraints can also have non-linearities based on form of f(x). Variables l
and u represent the bounds on the free variables. Hence the NLP can be linear, non-
linear, bounded, unbounded, constrained, or unconstrained based on the forms of the
functions described above. MINOS uses simplex for solving linear problems. If the
objective function has non-linearities and it is linearly constrained, it uses reduced-
gradient algorithm in conjunction with the quasi-Newton algorithm. Finally if there are
non-linear constraints, it uses projected Lagrangian algorithm.

4.2.3 MINOS Files

This section describes the source files of MINOS. There are 14 FORTRAN files and two
input files.  The three files that are of importance to the OD estimation program are:
Mi05funs.f, Minos.spc, and Minos.mps. These are briefly described here. Appendix A
and B describes an example to elaborate the input files for setting up the problem in
MINOS.

Mi0Funs.F – The Objective Function

Mi0Funs.F is the file that has the routine defining the objective function in the
optimization program. It returns the objective function value for a given value of the free
parameters, i.e., the routine returns a number – the value of F(x) for a given value of x.
In the OD estimation process, minimizing the weighted sum of the squared errors is
defined as the objective. Therefore the subroutine has to return the weighted sum of
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squared errors between the actual off-ramp counts and the predicted off-ramp counts
corresponding to the current value of the OD matrix. The form of the objective function
is given in equation (4.2).

F = wj Ôtj −Otj( )
j
∑

t
∑ 2

(4.2)

Where,
F – The objective function
wj – The weight for off-ramp j

ôtj/Otj – The predicted/actual off-ramp counts

Therefore in each function evaluation, the current OD matrix is used to build a
time sliced trip table which is used to simulate traffic in AIMSUN following which the
predicted off-ramp counts are extracted to compute the objective function. The routine
sets up the input files for AIMSUN, calls AIMSUN, extracts the data, computes the
objective function, and returns F.

In addition, X the independent variables vector is a linear array, but the OD
matrix is a two-dimensional. So the matrix needs to be stacked into an array. Typically,
the OD matrix is an upper triangular matrix as downstream on-ramps cannot feed
upstream off-ramps. Therefore, if NOR is the number of origins and NDES the number of
destinations, the dimension of X, n is not NOR*NDES but smaller. Therefore the allowed
interchanges need to be tracked. Also, since the objective function cannot be explicitly
defined, the gradients are numerically estimated.

Minos.spc – SPECS File

This is the specification file that defines the run time parameters. If no parameters are
defined the default values are used. A full list of the specs files definitions and the default
values are given in the MINOS user manual. Typically, the key parameters that need to
be defined in the specs file are the following:  Minimize (nature of problem); Nonlinear
Variables (number of parameters); Super Basics limit (feature of MINOS); Derivative
Level (definition of gradients – none/partial/full); Function Precision (related to the step
size); Optimality Tolerance (related to the exit conditions); and Iterations Limit (max
number of iterations). The Specs file is a text file and can be edited in any text editor.

MPS file – The Data File

This is the user-defined file that defines the name of the variables and constraints, the
linear constraints, lower and upper bounds, and the starting values. It is a text file and can
be edited in any text editor. In contrast to the free-form of the Specs file, this is a fixed-
form file. The entries are to be confined within the specific columns to be meaningful. In
the OD estimation program, this file is written before the estimation starts by the program
using the information from the starting OD matrix.
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4.2.4 Reduced Gradient Method

The gradient is defined as the direction of the change in the function for a change in the
free variable. Typically, if there are n free variables, the gradient vector has n
components, one for each of the free variables. In a constrained optimization, there is a
smaller feasible space than the unconstrained problem. If this additional information of
the constraints can be included in the gradients, it reduces the form and this new form is
called the reduced gradient.

Consider the example shown below,

NLP: Minimize  F(x)
Subject to Ax = b

x ≥ 0

If x is split into 2 components v and u then the constraints can be re-written as

Bv + Cu = b (4.3)

Differentiating equation (4.3)

⇒ Bdv + Cdu = 0 
(4.4)

∴dv = -B-1Cdu (4.5)

So, using equation (4.5) the gradient with respect to u using the chain rule is

dF
du

=
∂F
∂u

+
∂F
∂v

∂v
∂u

=
∂F
∂u

− B−1C ∂F
∂v   (4.6)

This is called the reduced gradient. In matrix notation, if g(x) is the gradient of F(x) then

the reduced gradient can be written as −B−1C I⎡⎣ ⎤⎦   g(x)  and the corresponding step in

the optimization can be defined as −B−1C I⎡⎣ ⎤⎦   du . Using the reduced gradient a search

direction along w is determined and the step size is given by feasibility conditions. Once
the free variables w change is identified, the change to the dependent variables v can be
calculated. The OD estimation problem has been setup as a linearly-constrained
minimization NLP. Hence the reduced gradient method can be used.

The simplex algorithm is an efficient method of minimizing linear objective
functions with linear constraints. The variables are split into two components—basic and
non-basic variables—with the non-basic set to the lower bounds and the basic variables
assigned values to retain feasibility. Such a solution is called a basic solution. The
constraint matrix A is split into a square matrix B whose columns are drawn from A and,
as the algorithm proceeds, different columns are replaced until the objective function
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cannot be improved. Extending this idea to minimizing non-linear objective functions
with linear constraints, an algorithm was developed by Murtagh and Saunders (1978) and
is implemented in MINOS. They split the variables as superbasic, basic, and non-basic.
The non-basic variables are set to the lower bounds, the superbasic variables are the free
variables that govern the optimization, and the basic variables take on values to assure
feasibility. Hence the constraint matrix A is split into 3 matrices – B (square), S and N.
The objective of all algorithms is to arrive at an equation to determine the step size from
a given feasible point towards the optimal point. The optimal point is the minima/maxima
and is a stationary point as the gradient vanishes. The following section describes the
method to determine the step size.
At a given feasible point x, if a step Δx is defined, the new point x +Δx will be a
stationary point if the new step is also on the plane defined by the current set of
constraints. The current set of active constraints are defined by fixing the non-basic
variables to the lower bounds, hence if the point is stationary, then the change to these
has to be null.

ΔxN = 0 (4.7)

Also, the constraint equation

Ax = b (4.8)

Differentiating equation (4.8)

AΔx = 0 (4.9)

Using the partitions in (4.9)

∴BΔxB + SΔxS + NΔxN = 0 (4.10)

Using equation (4.7) in (4.10)

ΔxB = -B-1SΔxS

⇒ Δx =
−B−1S
I
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ΔxS  (4.11)

Again, as in the example, using chain rule the gradient with respect to xs is defined as

dF
dxS

=
∂F
∂xS

+
∂F
∂x B

∂xB
∂xS

+
∂F
∂xN

∂xN
∂xS

 (4.12)
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Using (4.11) in (4.12) we get,

⇒
dF
dxS

=
∂F
∂xS

− B−1S ∂F
∂x B

+ 0 ∂F
∂xN

⇒ gA =
dF
dxS

= −B−1S I 0⎡⎣ ⎤⎦   g(x) (4.13)

Where, g(x) is the gradient and gA is the reduced gradient.
Now, consider the Taylor Approximation of the function

F(x+Δx) = F(x) + g(x)TΔx + _ ΔxT G(x+αΔx)Δx (4.14)

Where, g(x) and G(x) are the Jacobian and the Hessian respectively.

Now, differentiating equation (4.14) and setting the gradients to zero, gives an equation
to calculate a step size such that a stationary point can be located.

gB
gS
gN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+G

ΔxB
ΔxS
ΔxN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0 (4.15)

Now, multiplying equation (4.15) with −B−1S I 0⎡⎣ ⎤⎦  we get,

−B−1S I 0⎡⎣ ⎤⎦  G  
ΔxB
ΔxS
ΔxN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − −B−1S I 0⎡⎣ ⎤⎦  g  (4.16)

Using (4.11) and (4.13) in (4.16) we get,

−B−1S I 0⎡⎣ ⎤⎦  G  
−B−1S
I
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ΔxS = − gA
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This equation gives the Newton step size ΔxS for the algorithm. The term on the left side

is the reduced Hessian.  The vector −B−1S I 0⎡⎣ ⎤⎦  is denoted as Z.

The implementation of the algorithm is a bit more complicated as it calls for
efficient methods of handling the data and matrices. The basic variables matrix B is
factorized into a lower and upper triangular matrix (B = LU). Also the reduced Hessian
(ZTGZ) as defined above is never calculated and a quasi-Newton approximation RTR is
used. The computation of the reduced gradient is done in two stages. The equation

BTπ=gB is solved and the resulting π is used to calculate gA = gS - STπ. The steps of
the algorithm as described in Beck, Lasdon and Engquist (1983) are in Appendix C.

4.3 The Interface

The OD estimation method is an optimization problem with an embedded simulator. The
preceding sections explained the structure and working of the simulator – AIMSUN and
the optimization program – MINOS. This section describes the interface, the means to
facilitate the information exchange between these components. The process of building
the interface consists of identifying the information exchanged, setting up the means to
complete the exchange, and ensure that it is simple and transparent.

The OD estimation process is a search in the feasible space of OD matrices by
MINOS using the objective function value and the estimates of the gradient. The
objective function is evaluated using the sub-routine Funobj described in section 4.2.3.
Each evaluation includes using the current estimate of the OD matrix for a simulation run
in AIMSUN and calculating the objective function using the predicted counts from that
run and the actual counts.

The major difference between MINOS and AIMSUN is that MINOS is in source
code form in FORTRAN77 whereas AIMSUN is an executable. The interface building
would be easier if both were in source code forms. Based on the current configuration, it
can be setup in two forms. The interface could be built as third-party mediating
information between the components or as a built-in feature in MINOS. This is depicted
in Figure 4.1. The interface could be an external program that can be called by Funobj to
run AIMSUN and it returns the counts (third-party type) or a FORTRAN77 code inside
Funobj that calls AIMSUN and extracts the counts (built-in type). The built-in type of
interface is more elegant and has a lower overhead in terms of code. Hence it was chosen
and the information interchange between AIMSUN and MINOS was setup inside the
Funobj subroutine inside MINOS.

AIMSUN needs a network and a time sliced trip table for a simulation run.
MINOS needs the actual counts and the predicted counts corresponding to the current
estimate of the OD matrix. Hence the information exchanged between the two
components is the current OD estimate from MINOS to AIMSUN and the predicted
counts from AIMSUN to MINOS.
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Interface 

AIMSUN MINOS 

Interface AIMSUN 

MINOS 

Third-Party Type Built-in Type 

Fig 4.1 – Interface Types 

AIMSUN stores the relevant information of a network and the counts from a simulation
run in ASCII text format. The interface sends information into AIMSUN by writing into
these files and extracts the counts from these files to pass into MINOS. The typical steps
in the execution inside Funobj are the following:

1. Write the current OD matrix into a file.
2. Read the OD matrix and on-ramp counts and generate the trip tables.
3. Write the trip table for every time slice into AIMSUN readable format.
4. Call AIMSUN.
5. Read the AIMSUN detector files and extract the off-ramp counts.
6. Calculate the objective function.

Step 1 and Step 5 are simple file writing- and reading-processes. Taking the current
estimate of the OD matrix and multiplying it with the time slice on-ramp (input) counts
creates the time sliced trip table, which is done in step 2. The resulting trip table needs to
be written into a specific format for AIMSUN to read. The important point to note is that
the elements of the OD matrix are in real numbers but the on-ramp counts and the trip
table elements are integers. Hence there is a rounding operation in the product between
these matrices. Steps 2 and 3 are implemented in a separate subroutine trip table that
reads the OD matrix, creates the time sliced trip table, and writes into the needed format
for AIMSUN. The call to AIMSUN is done from within MINOS by transferring control
to the system and running the simulator and then returning the control to the program.
The final step of extracting the predicted counts is done using a separate subroutine
“getoff.”  The steps are described in detail in Figure 4.2.

The files required for the OD estimation program can be classified into categories,
one related to the simulator and the other to the optimization program. The latter requires
14 MINOS source code files, three user-defined source code files (to setup the problem,
write the trip table and read the counts), which are compiled and linked into one
executable file. In addition, there are the data files needed for the information interchange
related to the counts and starting OD solutions. The simulation component is associated
with a folder that has the network built using TEDI, the AIMSUN console version and
the scenario file to run the simulation.
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Chapter 5 – Generation of the Initial Solutions

The OD estimation problem has been posed as an optimization problem aimed at
minimizing the weighted sum of squares of the deviation of the predicted off-ramp counts
to the actual off-ramp counts. The method being used to search over the solution space is
the reduced gradient algorithm as implemented in MINOS. Typically the search can start
at any feasible point and proceed from there to finding the optimal point. Most search
routines start at one of the bounds and search from there onwards. The efficiency of the
search is a function of the nature of the problem, the algorithm, and the starting point.

Considering that the first two factors are held constant, a faster result can be
expected if a start is made in the vicinity of the optimal solution. It is important to note
that if the algorithm is robust, even a bad start will result in the optimal solution.
However, the speed of the convergence will be higher if we can start closer to the optimal
solution. Hence it becomes crucial to make a good guess of the solution using some
techniques and then let the method search the space for the optimal solution from that
point.

The starting solution (seed) is generally an “educated guess” of the solution. To
make that guess, the available information on the problem must be used. In the OD
estimation problem, the detector data – on-ramp counts, off-ramp counts, and mainline
counts—are readily available and can be used. In addition, the travel time and trip length
details can be extracted from the geometry. Using this information, five different methods
have been described in this chapter to estimate the starting solution for the minimization
problem. The reason for the choice of these techniques is based on simplicity, access, and
ease of implementation.

5.1 The Equally Split OD Matrix

This is the simplest method of seed generation. As the name suggests, it assumes that all
destinations are equally likely; hence it assigns proportions to all possible destinations
equally. As an illustration, consider the example freeway section as shown below in
Figure 5.1.

Figure 5.1—Example Freeway

 

1 2 3 4 5 

D1 -3 D2 - 5 

O1 - 1 D3 - 6 

O2 -2 O3 -4 
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In this case there are three origins, three destinations, and eight possible
interchanges. Now this method concludes that D1, D2 and D3 are equally likely
destinations for trips originating at O1 and O2, so the OD proportions will be 1/3
(33.33%). And, for O3 since it has only two possible destinations (D2 and D3), the
proportions will each be _ (50%). Following the convention in the OD estimation
program, the impossible interchanges are represented with a -1, an indication that no trips
originating at the corresponding origin can go to the corresponding destination. Using
these rules, the OD matrix generated is shown in Table 5.1.

O/D D1 D2 D3

O1 1/3 1/3 1/3

O2 1/3 1/3 1/3

O3 -1.0 _ _

Table 5.1 – The Equally Split OD Matrix

5.2 Proportional OD Matrix

This is the most commonly used and oldest method to estimate an OD matrix. It is based
on the concept that the attraction at any destination is a function of the number of trips
that end at that destination. In other words, the higher the number of trips ending at a
destination, higher the proportion of trips it attracts from all the origins. Hence if we have
three possible destinations, then the proportions are assigned based on the total number of
trips each of them attracts. A feature of this estimate is that it is independent of the
number of origins. This is explained using the same example as shown in Figure 5.1 and
the data in Table 5.2.

S. No Item Value

1 Section Lengths (in meters) 200, 300, 50, 250, 400

2 On-ramp Counts 375, 25 and 100

3 Off-ramp Counts 30, 70 and 380

4 Mainline Counts 370, 390, 350, 440 and 370

Table 5.2 – Freeway Example data

Now, starting with row 1 in the OD matrix, Origin 1 can feed all the three
possible destinations which have attractions – 30, 70, and 380.  Hence the elements in the
row are 30/(30+70+380), 70/(30+70+380) and 380/(30+70+380). Similarly, the elements
in row 2 and row 3 are estimated. The OD matrix with the intermediate calculations is
shown in Table 5.3.
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O\D D1 D2 D3

O1 =30/(30+70+380)
= 0.063

=70/(30+70+380)
= 0.146

=380/(30+70+380)
= 0.791

O2 =30/(30+70+380)
= 0.063

=70/(30+70+380)
= 0.146

=380/(30+70+380)
= 0.791

O3 -1.0 =70/(70+380)
= 0.156

=380/(70+380)
= 0.844

Table 5.3 – The Proportional OD matrix

5.3 Iterative Method

This is a method that has been adopted from Wills and May (1981). It is based on an
iterative proportional fitting algorithm developed by Deming and Stephan (1940). It can
be viewed as a hybrid proportional assignment technique that balances the inflows with
the outflows. The algorithm iteratively adjusts the cells of the OD matrix proportional to
the row and column sum until convergence is reached. The steps of the algorithm as seen
in that publication are given below.

Step 0

Set k = 0

Tij
(0) = 1 for all possible interchanges

0 for all impossible interchanges

Step 1

Set  )2(
)2(
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Where, O’i is the observed volume at point i adjusted for all known demands from i.

Step 2
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T    For all i, j

Where, D’j is the observed exiting volume at point j adjusted for all known trips that end
at j.
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Step 3

If  | Tij
(2k+2) – Tij

(2k) | < δ for all i, j then STOP

Else set k = k + 1 and go to Step 1.

To illustrate the working of the algorithm, the same example as described in Figure 5.1
and data in Table 5.2 are used. There are three matrices to track during the iterations and
also the final OD matrix is a trip-interchange matrix rather than a percentage matrix. The
intermediate steps are shown and the final OD matrix is shown in Table 5.4.

Iteration – 1
OD 1 OD 2 OD 3
1 1 1 125 125 125 29.29 49.71 269.8
1 1 1 8.33 8.33 8.33 1.95 3.31 17.99
0 1 1 0 50 50 0 19.8 107.9

Iteration – 2
OD 1 OD 2 OD 3
125 125 125 29.29 49.71 269.8 25.13 40.45 315.5
8.33 8.33 8.33 1.95 3.31 17.99 7.290 5.280 10.79
0 50 50 0 19.8 107.9 0.000 32.40 63.30

Iteration – 3
OD 1 OD 2 OD 3

25.13 40.45 315.5 25.13 40.45 315.5 25.13 40.45 315.5
7.290 5.280 10.79 7.290 5.280 10.79 7.290 5.280 10.79
0.000 32.40 63.30 0.000 32.40 63.30 0.000 32.40 63.30

O/D D1 D2 D3

O1 0.0659 0.1061 0.8278

O2 0.3120 0.2262 0.4616

O3 -1.0 0.3385 0.6615

Table 5.4 – The Iterative OD matrix estimate

5.4 The Gravity Model

The gravity model has been one of the oldest trip distribution methods. Although the
gravity model is a macroscopic model, it can be extended to freeways to determine the
proportion of trips getting off at each ramp. The main parameter in the Gravity model is
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the impedance function. The model for the impedance function was proposed by Nancy
Nihan and it incorporated the impedance function proposed by Voorhees. This is used as
it is stated in Wills and May (1981). It was a model based on the Gamma distribution. It
is related to the concept that the probability of very long and very short trips is low on the
freeway. The gamma function has a shape that is similar to this assumption. The model
that she proposed was the following:

ijd
ijij edF βα

α

α
β −−

Γ
= )1(

)( (5.1)

Where,
Fij is the travel propensity factor between ramp i and j.
α = shape factor ≅ 1.5
β = size parameter = α /avg. trip length
dij = distance between pair (i, j)
avg. trip length = _ = (1/T)*Σk (Link length)*(Link Volume)
T = sum of all trips generated

The cell entries in the OD matrix are defined as

Tij =
bjFij
bjFij

j
∑ Qi (5.2)

Where,
Tij = trip interchange between pair (i, j)
bj = balance factor from iterations
Qi = production at i
Dj = attraction at j

Subject to the constraint Σi Tij = Dj

In the implementation of the algorithm, the balancing factor was ignored. This
was done as a simplifying step because only a starting solution was needed rather than an
accurate estimate. Again using the same example in Figure 5.1 and the data from Table
5.2 this method is elucidated. The α is assumed to the average
t r i p  l e n g t h  f r o m  t h e  g e o m e t r y  =
(370*200+390*300+350*50+440*250+370*400)/(375+25+100) = 933m. The last
parameter of the gravity model β = α/933 = 0.0016. Using these parameters and the
distance matrix (Table 5.5), the impedance factors are estimated and shown in Table 5.6.
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O/D D1 D2 D3

O1 500 800 1200

O2 300 600 1000

O3 0 250 650

Table 5.5 – The Distance matrix

O/D D1 D2 D3

O1 0.0008325 0.0008122 0.0005050

O2 0.0005701 0.0008692 0.0006671

O3 0 0.0004650 0.0008686

Table 5.6 – The Impedance matrix

The resulting OD matrix is given in Table 5.7.

O/D D1 D2 D3

O1 0.1793 0.3328 0.4878
O2 0.1093 0.3170 0.5736
O3 -1.0 0.1850 0.8150

Table 5.7 – The Gravity Model OD matrix

5.5 Turning Percentage

This is the most intuitive method of estimating an OD matrix for a freeway section. The
method, as the name suggests, is based on the turning percentages. The underlying idea is
that at any given off-ramp, the turning percentage is independent of the trip origin. Hence
by tracking the turning percentages in each section, we can back-calculate the OD matrix
percentages. The last section has the turning percentage = 100% as it is the final
destination. The method is illustrated using the example from Figure 5.1 and Table 5.2.
The turning percentage in each section is first calculated. A section is defined as a portion
of the freeway that is between on-ramps and off-ramps such that the upstream end of the
section is an on-ramp and the downstream end is an off-ramp. Using this convention,
there are five sections. The turning percentages in them are as follows: 0, 7.69, 0, 15.9,
and 100. The OD cells are assigned by starting at every origin and proceeding
downstream assigning the OD cells with the turning percentages at each off-ramp and
tracking the exited vehicles.  The resulting OD matrix calculations are shown below in
Table 5.8.
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O\D D1 D2 D3

O1 0.0769 =0.159*(1-0.0769)
= 0.1468

=1-0.159-0.0769
= 0.7763

O2 0.0769 =0.159*(1-0.0769)
= 0.1468

=1-0.159-0.0769
= 0.7763

O3 -1.0 0.159 =1.0-0.159
= 0.841

Table 5.8 Turning Percentage OD matrix

5.6 Implementation

The seeds are OD matrix estimates from the data for the freeway section for a given time
interval. In the OD estimation program there is data for every five minutes over three
hours. Hence, in the actual seed generation process, the cumulative data is used for
making the estimates. In other words, the data used for the seed generation (Table 5.2) is
the aggregated value of the data from all the time intervals.

All the above methods have been implemented in the form of programs written in
FORTRAN77.  The choice of using FORTRAN77 is used because MINOS is in
FORTRAN77 and so, for compatibility and uniformity, the language was chosen over a
later version like F90 or C/C++. They serve as an external input to the OD estimation
programs. The seeds are generated and fed into the OD estimation program and OD
matrix estimates are obtained.
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Chapter 6 – Test sites and Results

This chapter describes the test sites, the data, the different experiments conducted on
these sites and their results. Two test sites are used for the OD estimation method. The
first site is a one on-ramp, one off-ramp freeway section primarily used to test the
program. The second site is a real freeway section, TH-169.

6.1 Case 1 – 2 Origin, 2 Destination

Figure 6.1 shows the first test site for the OD estimation method. It is a hypothetical
freeway section that has one on-ramp and one off-ramp, two origins and two destinations.
The OD estimation method has four parameters to estimate. It must be noted that there
are only two free variables, as there are two constraints.

Figure 6.1 - First Test Site

The section parameters are shown in Table 6.1.

section # Length
(m)

#lanes v-max
(km/h)

Capacity
(vplph)

1 488 3 116 2100
2 559 3 116 2100
3 356 2 116 2100

Total 1403

Table 6.1 – Section Parameters

6.1.1 Data

Since this is a hypothetical freeway section, the data set was generated as follows. An OD
matrix and some on-ramp counts were assumed. The site coded in AIMSUN, traffic is
simulated, and the off-ramp counts are measured. Now these measured off-ramp counts
and the assumed on-ramp counts are the data set used to estimate an OD matrix. The off-

O1O2D1D2123
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counts are collected every five minutes and the simulation period is three hours
(representing the peak period). This process was used to generate traffic data for five
different days. The data set used for the estimation is shown in Appendix D. The data
generation process is shown in Figure 6.2.

The idea to use AIMSUN to construct the data set had the advantage of removing
the specification error in the estimation because the model that generated the data will be
the same model used in the OD estimation. So the error in the estimate introduced due to
the discrepancy in the two models is removed, unlike with real data where AIMSUN is an
approximation to the real world.

 

Assume OD 
Matrix (b i,j) 

Assume On -ramp 
counts (Q t,i) 

Calculate time 
sliced trip tables  

Simulate in 
AIMSUN  

Observe Off -ramp 
counts (O t,j) 

Simulated dataset 
Qt,i and Ot,j 

Figure 6.2 – Data generation process (simulated data set)

6.1.2 Results

The results of the OD estimation are shown in Table 6.2, which has the actual OD matrix,
three starting solutions and their corresponding final estimates, the starting and final
values of the weighted sum of squared errors, and the R2 for the two destinations with
respect to each of the three final solutions.

The first observation is that the OD estimation method has been implemented
“bug-free” and that the method works, a conclusion from the convergence in the
objective function. The results indicate that the final OD estimates are different from each
other and the assumed OD matrix.
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Actual OD d1 d2
o1 0.3250 0.6750
o2 0.2500 0.7500

Seed Solution Weighted Sum of Squares
1 Start End

d1 d2 d1 d2 seed
o1 0.5000 0.5000 o1 0.3097 0.6904 1 253.67 2.43
o2 0.5000 0.5000 o2 0.5000 0.5000 2 3.10 2.34

3 310.25 2.39
2

d1 d2 d1 d2
o1 0.3220 0.6780 o1 0.3235 0.6765 R-squared
o2 0.3220 0.6780 o2 0.4051 0.5949 D1 D2

seed
3 1 0.9535 0.9856

d1 d2 d1 d2 2 0.9617 0.9766
o1 0.5646 0.4354 o1 0.3199 0.6801 3 0.9565 0.9775
o2 0.4646 0.5354 o2 0.4367 0.5633

Table 6.2 – OD Estimates, 1-day 3hr simulation

However, they all have low objective function values and also high r-squares, an
indication that, in terms of reproducing the counts, the OD estimates perform similarly.
The issue of multiple solutions needs to be addressed. The logical step that followed was
to investigate the nature of the objective function to explain the above results. Before
proceeding to investigate, another experiment was conducted using all five days of data
generated.

6.1.3 Multiple Days

The idea of using multiple days for the estimation process is related to the assumption
that the inability of the method to estimate the OD matrix is lack of sufficient information
(identifiability). Hence by providing the additional day’s data, maybe there is some
additional information in the system to help identify the OD matrix. The results from this
case are shown in Table 6.3. The format of the data in Table 6.3 is the same as in Table
6.2.
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Actual OD d1 d2
o1 0.3250 0.6750
o2 0.2500 0.7500

Seed Solution Weighted Sum of Squares
1 Start End

d1 d2 d1 d2 seed
o1 0.5000 0.5000 o1 0.3152 0.6848 1 1342.17 13.78
o2 0.5000 0.5000 o2 0.5000 0.5000 2 19.63 14.54

3 1664.08 14.30
2

d1 d2 d1 d2
o1 0.3220 0.6780 o1 0.3262 0.6738 R-squared
o2 0.3220 0.6780 o2 0.3234 0.6766 D1 D2

seed
3 1 0.9477 0.9749

d1 d2 d1 d2 2 0.9441 0.9792
o1 0.5646 0.4354 o1 0.3183 0.6817 3 0.9441 0.9762
o2 0.4646 0.5354 o2 0.4211 0.5789

Table 6.3 – OD Estimates, 3-days 3hr simulation

Again, as seen in Table 6.2, the OD matrix estimates are all different from each
other but reproduce the counts well, as indicated from the high r-squares and the low
objective function values. An interesting point to note is that, in both cases (Table 6.2 and
Table 6.3), the downstream mainline (D2) is matched better than the off-ramp (D1). Also,
the first row of the OD matrix (the upstream mainline) is estimated better than the second
row (on-ramp). An important observation is that the mainline tends to dominate the
estimation process.

6.1.4 Nature of the Objective Function

The advantage of this site is that there are only two independent variables (four free
variables and two linear constraints). This opens the possibility of plotting the objective
function across the feasible space in three dimensions.
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Figure 6.3 – Objective Function 1-Day

This plot will give insight into the nature of the objective function and help explain the
performance of MINOS in minimizing the objective function from the shape/surface of
the objective function over which MINOS searches to find the optimal OD matrix. So the
objective function was calculated for a range of values around the actual value of the OD
matrix using one, two, three, four, and all five days of data. The plots are shown below in
Figures 6.3, 6.4, 6.5, 6.6, and 6.7 respectively.
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Figure 6.4 – Objective Function 2-Days

MINOS is a gradient-based method and only promises local optima. In addition, since
MINOS has to numerically estimate the gradients, the search method is not as efficient as
compared to the case where the gradients can be defined explicitly. It is observed that the
plots are very uneven and spiky. The optimal point is the lowest point on all the plots that
corresponds to the actual OD matrix. The valley leading to that point is very steep. Also,
as the additional days of data are added the objective function looks less noisy.
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Figure 6.5 – Objective Function 3-Days

The objective function is the map between the OD matrix and the off-ramp counts. The
OD matrix is the input and the output is the off-ramp counts, which feature in the
objective function. The map as described above is a function of AIMSUN. Hence the
shape of the objective function is related to the way AIMSUN takes in an OD matrix and
generates the off-ramp counts. The general spiky nature of the objective function
indicates a discontinuous map. Also there seems to be a many-to-one map, i.e., there is
more than one OD matrix that has the same objective function value. This explains why
we end up with different OD estimates but similar levels of performance with matching
the counts.
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Figure 6.6 – Objective Function 4-days

The gradual smoothing or reduction in the noise of the objective function would make the
searching process of MINOS efficient. However, the smoothing did not have a significant
influence on the results. Therefore, it was concluded that the information given by the
additional days was not sufficient.

If two days of data were identical, then the additional information will be zero and
if they are as different as they can get, the information added will be maximum. Hence a
reasonable mix of the two will be ideal, as more information is needed for the OD
estimation. Also, the dominant effect of the mainline in the OD estimation is observed.
So, it is hypothesized that if there was some way to reduce its effect on the estimation, it
might be useful. Hence another data set was constructed using these ideas.
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Figure 6.7 – Objective Function 5-Days

6.1.5 Radical Data Set

The dominance of the mainline counts in the OD estimation was observed. Hence it was
decided to alter the effect of the mainline in the data set. If it is imagined that the on-
ramps were operated one at a time by shutting off the other ramps and the mainline, the
actual OD matrix can be estimated accurately. But, this is a practical impossibility. An
approximation to this would be to assume on-ramp volumes equal in magnitude to the
mainline counts, which is termed as a “bizarre” day. Using these on-ramp counts from
such a “bizarre” day and a regular day, an OD matrix could be estimated. The data set
used is in Appendix E. The results from this experiment are shown in Table 6.4
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Actual OD d1 d2
o1 0.3250 0.6750
o2 0.2500 0.7500

Seed Solution Weighted Sum of Squares
1 Start End

d1 d2 d1 d2 seed
o1 0.5000 0.5000 o1 0.3332 0.6669 1 849.37 4.90
o2 0.5000 0.5000 o2 0.1834 0.8166 2 7.61 4.45

3 17.44 3.45
2

d1 d2 d1 d2
o1 0.3288 0.6712 o1 0.3135 0.6865 R-squared
o2 0.3288 0.6712 o2 0.3241 0.6759 D1 D2

seed
3 1 0.9851 0.9959

d1 d2 d1 d2 2 0.9890 0.9943
o1 0.2827 0.7173 o1 0.3265 0.6735 3 0.9849 0.9929
o2 0.4548 0.5452 o2 0.2488 0.7512

Table 6.4 – OD Estimates, Radical data set

Again, as in the above cases, the different OD matrices replicate counts with the same
levels of accuracy. However, seed-3 has estimated the OD matrix accurately, an
indication that the data set was such that the OD matrix could be estimated accurately.
However, there is a chance that this estimate was purely accidental. Since not all the
seeds converged to the solution, there is not enough evidence to believe that this assures
the correct solution.

In conclusion, the experiments with this site have helped in checking the setup for
the OD estimation process, given good insight into the nature of the objective function,
brought to light some inherent features in this OD estimation method using MINOS and
AIMSUN, and provided some indications to the existence of multiple solutions and an
identifiability problem.

6.2. Case 2 – TH-169

The real site chosen for the OD estimation was TH-169. It was chosen because the
network was previously built and calibrated in AIMSUN. The chosen section is
Northbound, starting at the intersection with TH-55 and up to the intersection with 63rd

Avenue, just south of the intersection with I-94. It is about 6.5 miles long and has 11 on-
ramps and 10 off-ramps. So the OD matrix has 12 origins and 11 destinations. There are
76 non-zero entries in the OD matrix. The section parameters of the freeway are given in
Appendix F. A schematic of the location of the test site is shown in Figure 6.8.

6.2.1 Data

The real data used for the estimation process was collected during the ramp-meter
shutdown period, so that the simulation was done without ramp metering. The data was
the five minute detector counts from November 1, 2 and 3, 2000 for the morning peak
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between 7 a.m. and 10 a.m. The drawback in this case is that the actual OD matrix is not
known, so there is no reference to compare the estimates and pick the best. The only
guidelines that are available are the ramp counts, their r-squares, and percentage
deviations.

Figure 6.8 – Test Site TH-169

However, if a simulated data set is created as shown in Figure 6.2 and then an OD
matrix estimated, the properties of the estimates can be evaluated better. Also, the
system-wide MOE’s like Total Travel and Total Travel Time can also be measured and
will indicate the ability of the OD matrix to reproduce the system characteristics. But,
using a simulated data set discounts AIMSUN and removes the specification error so the
results with the simulated data set are expected to be better than the real data set.

6.2.2 Simulated Data Set Results

The simulated data set is given in Appendix G. The results from the OD estimation are
shown in Table 6.5. The actual OD estimates are also given in Appendix G. Table 6.5 has
the average absolute percentage deviation for the off-ramp counts using the OD estimates
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and the actual off-ramp counts. Also the r-squares for the ramps are given. The ‘F-value’
is the final objective function value and the Sq.dev is the sum of the square of the errors.
The system-wide MOE’s are shown in Table 6.6 and 6.7.  Solutions 2, 3 and 5
correspond to seeds 2, 3, and 5 respectively.

Solution 5 Solution 2 Solution 3

Fvalue 7.46 Fvalue 131.84 Fvalue 9.09
Sq.dev 2209 Sq.dev 21740 Sq.dev 2377

Ramp % deviation R-squared Ramp % deviation R-squared Ramp % deviation R-squared

D1 0.56 0.9927 D1 3.20 0.9345 D1 1.94 0.9827
D2 1.91 0.9742 D2 4.08 0.9477 D2 1.92 0.9830
D3 0.65 0.9794 D3 17.61 0.8815 D3 0.96 0.9688
D4 0.00 1.0000 D4 8.54 0.8058 D4 1.07 0.9852
D5 1.12 0.9883 D5 4.61 0.9202 D5 2.07 0.9819
D6 0.41 0.9941 D6 5.76 0.9297 D6 1.18 0.9848
D7 0.93 0.9932 D7 8.05 0.9298 D7 1.43 0.9905
D8 2.17 0.9721 D8 8.70 0.8152 D8 1.45 0.9785
D9 2.17 0.9328 D9 13.53 0.9207 D9 1.78 0.9706
D10 1.12 0.9768 D10 18.81 0.8970 D10 2.46 0.9637
D11 0.00 0.9921 D11 6.01 0.9802 D11 1.25 0.9919

Table 6.5 – Results, TH-169 Simulated Data Set

The estimates accurately reproduce the off-ramp counts, and all the final OD
estimates have a low magnitude of error from the actual OD matrix and can be thought of
as closed solutions. Also, these estimates reproduce the system wide MOE’s very well.

System wide MOE's unit Actual

Mean Flow veh/hr 6942
Mean Speed km/hr 76.2
Mean Delay sec/veh 9
Mean # Stops per veh 0.1
Total Travel km 112792.7
Total Travel Time hours 1480.2
Total Delay hours 63
Total # of Stops 3638

Table 6.6 – System wide MOE’s for the simulated data set
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System wide MOE's Solution 5 % deviation Solution 2 % deviation Solution 3 % deviation

Mean Flow 6938 -0.06 6949 0.10 6939 -0.04
Mean Speed 76 -0.26 74.3 -2.49 76.4 0.26
Mean Delay 10 11.11 14 55.56 9 0.00
Mean # Stops 0.1 0.00 0.1 0.00 0.1 0.00
Total Travel 112778.7 -0.01 115292.6 2.22 112332.6 -0.41
Total Travel Time 1483.9 0.25 1551.7 4.83 1470.3 -0.67
Total Delay 65.8 4.44 110.7 75.71 55.5 -11.90
Total # of Stops 4706 29.36 8573 135.65 4682 28.70

Table 6.7 – System Wide MOE’s for the Solutions
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Figure 6.9 – OD Estimate Comparison (Solution from Seed 5 vs. Assumed)

To illustrate the accuracy of the OD matrix estimated, the percentage deviation in
the OD matrix entries between the one estimate (solution 5) and the assumed OD matrix
is shown in Figure 6.9. Figure 6.9 has one column for each OD matrix cell entry,
representing the percentage error between the estimated and actual OD matrix.

The important point to note about this figure is that the observed range of error is
between ± 2%, a fairly high range of accuracy. Hence this experiment has generated
expected outcomes—good reproduction of the counts and the system properties. All the
solutions seem to be close to each other and the assumed OD matrix. This indicates that
the method as set up has performed well. This is because the data was generated using
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AIMSUN and so has discounted the errors that will be normally introduced by using
AIMSUN to approximate the data-generating method. As a conclusion, the estimates
seem to converge to the actual OD and are very good in terms of reproducing the counts
and the system-wide statistics.

6.2.3 Real Data Results

The real data set used for the OD estimation process is given in Appendix H. The results
from the run using one-day data are given in Table 6.8. The warm-up run was done to
account for the discrepancy that occurs when the simulation starts and the system is
empty, but in reality there are cars in the system. Hence by skipping the first three time
slices, a time period over which the system has near-reality operating conditions, the OD
estimation process is conducted for the remaining 33 time slices rather than the 36 time
slices as in the first case.

The results are not as good as the simulated data set. The low r-squares are due to
the inherent nature of the counts. But the percentage deviation and the sum of the squared
errors are good measures of the performance of the estimates. Again, as in the previous
cases, the mainline is matched best. The final objective function values are an order of
magnitude higher than the simulated data set results. The only similarity in the two
experiments is that the OD estimate corresponding to seed 5 (turning percentage based)
was the best estimate.

Real data 1 day Real data 1 day with warm up time
1-Nov-00 7 am-10 am 1-Nov-00 7:15 am-10 am

Solution 5 Solution 5

Fvalue 260.63 Fvalue 243.36
Sq.dev 21960 Sq.dev 22626

Ramp % deviationR-squared Ramp % deviationR-squared

D1 14.58 0.8150 D1 15.41 0.8040
D2 22.51 0.4790 D2 26.66 0.5220
D3 15.81 0.1777 D3 15.65 0.2325
D4 27.06 0.2319 D4 24.98 0.2479
D5 24.43 0.0330 D5 19.06 0.1058
D6 32.23 0.0078 D6 30.39 0.0081
D7 18.91 0.6044 D7 24.00 0.6077
D8 20.49 0.1666 D8 21.49 0.1777
D9 29.44 0.4666 D9 36.86 0.5235
D10 28.28 0.5371 D10 32.86 0.5086
D11 6.03 0.8710 D11 6.65 0.8927

Overall 0.9800 Overall 0.9800

Table 6.8 – Results, TH-169 Real Data
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The inability to better the estimates was attributed to lack of information in the
system. At an abstract level, if there is not enough information in the system, the
parameters cannot be identified. So, some modifications were proposed to the problem
along the lines of adding information into the system. The experiments with the first test
site in terms of improving the estimates by adding additional data into the system was
attempted to this real data set. Unlike in the simulated case, wherein the data set could be
modified, the real data used for the estimation cannot be changed.

As a first modification, the additional information into the system was the
multiple days’ data. Two other modifications were proposed. Based on the observation
that the mainline proportions were being estimated accurately, the OD estimation process
was decomposed as a two-phase optimization. The first phase was the OD estimation of
all the OD cell entries and, after the optimal solution was obtained as a second phase, the
mainline elements were treated as constants and the rest of the OD elements were re-
estimated. The last modification was to add the OD matrix into the objective function. In
other words, in addition to a term with the weighted sum of squared errors of the off-
ramps, a term that measured the squared error of the current OD matrix with the starting
OD matrix was added. This can be interpreted as forcing MINOS to search in a feasible
space not very far from the starting solution, under the pretext that there is a good starting
solution. Mathematically, the objective function is represented as follows.

∑∑∑ −=
d j t

jtdjtdjdmultidays OOwF 2
,,,,, )ˆ(

∑∑ ∑∑∑ −+−=
d j i j

jijidestimedays
t

jtdjtdjdnew bbNNNOOwF 2
,,

2
,,,,, )0(**)ˆ(

Where,

Fmultidays –the objective function with multiple days.
Fnew –the new objective function with OD matrix included in it.
i, j, t, d – indices for origins, destinations, time slices, and days respectively.
wd,j – weight for destination j on day d.

jtdO ,, , jtdO ,,
ˆ

 - observed and predicted counts at off-ramp j in time slice t on

day d.
bi,j, b0i,j – current and starting OD matrix entries from on-ramp i to off-ramp j.
Ndays, Ntime, and Ndes – number of days, time slices, and destinations respectively.

The objective function is the same for the two-step optimization, just that in the
second phase, the first row of the OD matrix b1,j are treated as constants. The second term
in Fnew has only one term for all the time slices and days, but the first term has multiple
terms corresponding to each time slice in each day for each destination. So, to scale the
terms equally, the second term is scaled up by the product of Ndays, Ntime,and Ndes. The
related results are in Table 6.9. The estimated OD matrices are in Appendix H.

There are some marginal improvements in terms of the reduction of the objective
function value. However, the ability to match the ramps has not improved significantly.
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This inability to get good estimates can be attributed to a combination of the mismatch
between reality and AIMSUN, bad data, and the identifiability issue in the estimation
process. Evidence to support all the above has been seen in the previous experiments.

New Objective Function 2-step Optimization
3-days 3-days 3-days
Nov 1,2,3 7 am-10 am Nov 1,2,3 7 am-10 am Nov 1,2,3 7 am-10 am

Solution 5 Solution 5 Solution 5

Fvalue 825.42 Fvalue 811.56 Fvalue 806.64
Sq.dev 75247 Sq.dev 77924 Sq.dev 74742

Ramp % deviationR-squared Ramp % deviationR-squared Ramp % deviationR-squared

D1 17.25 0.5781 D1 19.21 0.5695 D1 17.45 0.5737
D2 20.35 0.4912 D2 22.56 0.4934 D2 20.68 0.4820
D3 20.28 0.2497 D3 21.27 0.2502 D3 19.12 0.2448
D4 23.32 0.1151 D4 24.98 0.1022 D4 24.00 0.1155
D5 32.29 0.1330 D5 34.38 0.1211 D5 32.42 0.1089
D6 32.09 0.0246 D6 30.91 0.0075 D6 28.39 0.0317
D7 17.85 0.6519 D7 19.07 0.6425 D7 17.95 0.6503
D8 21.60 0.1652 D8 22.15 0.1556 D8 21.83 0.1666
D9 27.93 0.5001 D9 28.06 0.5270 D9 28.12 0.4897
D10 40.84 0.4943 D10 37.43 0.5078 D10 36.76 0.5144
D11 7.20 0.8082 D11 7.24 0.8133 D11 7.19 0.8073

Overall 0.9773 Overall 0.9777 Overall 0.9806

Table 6.9 – Results, TH-169 Real Data with Modifications
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Chapter 7 –Hypothetical Grid Network

Networks have a better information base in the sense that in addition to the numerous link
counts there is a possibility of collecting the turning movement counts also. This
additional information is expected to improve the OD estimation process. Also as
mentioned earlier, the OD estimate is more consequential to the network than freeway
sections, as simulation without an OD matrix is impossible in a network but possible for
freeways. To start with, we build a hypothetical grid type network as shown in Figure 7.1

Figure 7.1 – Hypothetical Grid Network

The network has eight origins and eight destinations (in all 64 possible
interchanges). There are four lights and one stop sign. Also, there are 16 one-way and 32
two-way links and 13 junctions in the network. As before, input counts and an OD matrix
are assumed and simulating within AIMSUN generates the data set. In this case, the
observed data comprises of the turning volumes at each section and the link counts every
15 minutes over a three-hour simulation period. Now the OD estimation process is done
trying to match the turning volumes rather than the link counts. The data set is given in
Appendix I.  The important difference between the freeway and the network simulation is
the route choice model. AIMSUN has the capability to model dynamic and static route
choice models. Also, from the geometry, as the inputs vary, there is a shifting of trips
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between equally likely alternate routes. The following scenarios are used for the OD
estimation.

The scenarios get progressively complex and the final is the closest to reality.
1.  One time slice and fixed route choice.
2.  One time slice and dynamic route choice.
3.  Multiple time slices, fixed route choice, same trip table per time slice.
4.  Multiple time slices, dynamic route choice, same trip table per time slice.
5.  Multiple time slices, fixed route choice, different trip table per time slice.
6.  Multiple time slices, dynamic route choice, different trip table per time slice.

Table 7.1 – Results Hypothetical Grid 1 Time Slice

The results pertinent to step one are given in Table 7.1. As of now, only Step one has
been completed and the rest are being worked on (one time slice = 15 min).

The best OD estimate (Solution 2, Seed 1) is shown as a comparison to the
assumed OD matrix in terms of the percentage deviation from the cell entry in Figure 7.2.
The plot in Figure 7.2 is between the simulated and actual link counts. All the points
seem to be around the y=x line. Also, the OD matrix estimated is good in terms of
matching the turning volumes, the assumed OD matrix, and the system wide MOE’s.
Hence, the experiment has given us satisfactory results with the one time slice case. The
OD estimation process on a network remains to be fully developed but the initial results
are encouraging and promising.

New Grid 15min slice match turning volumes

System wide MOE's unit Actual Solution 1 % deviation Solution 2 % deviation

Mean Flow veh/hr 2388 2388 0.00 2412 -1.01
Mean Speed km/hr 24.5 25 -2.04 24.8 -1.22
Mean Delay sec/veh 112 111 0.89 105 6.25
Mean # Stops per veh 5.9 5.8 1.69 5.9 0.00
Total Travel km 162.3 158.8 2.16 155.1 4.44
Total Travel Time hours 6.6 6.4 3.03 6.3 4.55
Total Delay hours 18.6 18.4 1.08 17.6 5.38
Total # of Stops 3522 3463 1.68 3558 -1.02
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Figure 7.2 – OD Estimate Comparison

Figure 7.3 – Link Counts Comparison
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Chapter 8 – Conclusions

An offline method to estimate a static OD proportions matrix for a freeway section over
the peak period has been proposed. Most OD estimation methods have some form of a
linear model to represent the relation between the on-ramp and the off-ramp counts and
Davis and Yu (1994) showed that the approach having a traffic flow model embedded in
the estimation process outperformed the linear models. This method enhances that
approach. The appeal in the method is its simplicity. The problem has been defined as an
optimization process with an embedded simulator that tries to find an optimal OD matrix
that minimizes the weighted sum of the squared deviations of the off-ramp counts. The
method is a combination of simulation and optimization. The simulation component is
the microscopic simulator AIMSUN and the optimization routine is MINOS.

The method does not need a prior estimate of the OD matrix unlike most offline
methods. As a part of the estimation process, using the time series of counts, estimates of
the OD matrix are made using five different methods, and starting solutions (seeds) are
generated. These are used to start the search in the optimization process. This method can
also be interpreted as an efficient updating scheme of the starting OD estimate. Hence,
this can also be used to improve any prior estimate.

Experiments were conducted on two test sites. The first test site was an imaginary
test section of a freeway. The data set was simulated and the general observations on the
results are as follows. The starting solutions converged on different OD matrices that had
comparable performance with respect to reproducing the counts, an indication of a many-
to-one map between OD matrices and the objective function. The mainline proportions
were matched best. The plots of the objective function over the space near the optimal
point gave very useful insight into the non-linearity and spiky nature of the map between
the OD matrix and off-ramp counts as generated by AIMSUN. The experiments with the
“bizarre” day data set indicated the possibility of an identifiability issue.

The second test site was TH-169. This had 76 non-zero entries that needed to be
estimated. This is a sizeable increase in dimension over the network handled in Davis and
Yu (1994). Two sets of experiments were conducted on this site using a real and a
simulated data set. The simulated data set resulted in very good estimates that matched
the counts and the system statistics very well, and the final solutions were close to each
other and to the true OD matrix. The real data set, on the other hand, did not produce
equivalent results. New modifications to the method were proposed and the results did
not improve significantly.

The experiments alluded to the following issues. The map between the OD matrix
and the off-ramp counts is very spiky and the surface is very uneven. Also the plot
indicated the possibility of a many-to-one map between the OD matrix and the objective
function. The experiment on the “bizarre” day indicated an identifiabilty issue. The
inability to improve the estimates using real data to match the ramp counts as well as the
simulated data set could be a mix of all the above causes and also data discrepancy. The
most important observation is the performance in the simulated data set. As discussed in
Chapter 3, the process relating the on-ramp and off-ramp counts can be approximated as
a data-generation scheme. If a microscopic traffic simulator can approximate that process
reasonably well, the OD matrix can be estimated accurately, which is evident from the
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simulated data set wherein the microscopic traffic simulator is the process that generated
the data set.

In conclusion, this offline method has great appeal due to its simplicity. Also the
method does not need an a priori start solution:  multiple starting solutions are generated
using the data set. The performance improves as the ability of AIMSUN to match the
actual model that generated the data set is higher. Also, the data collected from the
detectors must be error free. Interesting findings relating the mainline dominance and
identifiability have been found from the experiments on the first test site. The
modifications to the traditional objective function have been proposed and the two-step
optimization seems promising. Finally, the use of a micro-simulation makes the
evaluation of the estimates better because counts as well as other system statistics can be
compared.

Future work can be done on enhancing the performance of the microscopic traffic
simulator with better calibration. The new modifications to the traditional objective
function, the two-step optimization, and the new objective function need to be
investigated. Finally, the identifiability issue of insufficient information in the off-ramp
counts can be investigated by experimenting with alternate sites that have additional
information, like a small network with turning movement volumes.
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APPENDICES

Appendix A – Example MPS file

Consider the following network to estimate and OD matrix.

Figure A1 – Example freeway

The following section describes the relevant parameters and the format for the MPS and
SPECS file. It has 3 origins and 3 destinations. A Typical OD matrix would look like
Table A1.

O/D D1 D2 D3

O1 0.063 0.146 0.791

O2 0.063 0.146 0.791

O3 0.0 0.156 0.844

Table A1 – Sample OD matrix for example freeway

The MPS File

There are only eight feasible interchanges (O3 _ D1 not possible) represented by the
variables named as X001 to X008 in the order enumerating from Origin1 proceeding to
all destinations and then the Origin 2 and so forth. The OD matrix is stacked into one
single array.  There are three constraints, corresponding to each of the three origins,
stating that the sum of the proportions of the trips have to add up to 1.0 named as
ORI001, ORI002, and ORI003. They are equalities denoted by the key word E and the
RHS and the Coefficients are 1.0. This is represented in the RHS and the COLUMNS
sections. Logically these values are bounded by 0.0 and 1.0. Hence, the lower and upper
bounds for all the eight variables LO and UP are 0.0 and 1.0. In addition, the initial
values are defined for the variables in the INITIAL bounds section. The file is as shown
below.

NAME

O1 - 1O2 -2D1 -3D2 - 5O3 -4D3 - 6



 A2

ROWS
E  ORI001
E  ORI002
E  ORI003
COLUMNS
    X001      ORI001      1.0000000
    X002      ORI001      1.0000000
    X003      ORI001      1.0000000
    X004      ORI002      1.0000000
    X005      ORI002      1.0000000
    X006      ORI002      1.0000000
    X007      ORI003      1.0000000
    X008      ORI003      1.0000000
RHS
    DEMANDS   ORI001      1.0000000
    DEMANDS   ORI002      1.0000000
    DEMANDS   ORI003      1.0000000
BOUNDS
 LO BOUND1    X001        0.0000000
 UP BOUND1    X001        1.0000000
 LO BOUND1    X002        0.0000000
 UP BOUND1    X002        1.0000000
 LO BOUND1    X003        0.0000000
 UP BOUND1    X003        1.0000000
 LO BOUND1    X004        0.0000000
 UP BOUND1    X004        1.0000000
 LO BOUND1    X005        0.0000000
 UP BOUND1    X005        1.0000000
 LO BOUND1    X006        0.0000000
 UP BOUND1    X006        1.0000000
 LO BOUND1    X007        0.0000000
 UP BOUND1    X007        1.0000000
 LO BOUND1    X008        0.0000000
 UP BOUND1    X008        1.0000000
 FX INITIAL   X001        0.063
 FX INITIAL   X002        0.146
 FX INITIAL   X003        0.791
 FX INITIAL   X004        0.063
 FX INITIAL   X005        0.146
 FX INITIAL   X006        0.791
 FX INITIAL   X007        0.156
 FX INITIAL   X008        0.844
ENDATA
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Appendix B – Example SPECS File

The Specs File

The choice of Function Precision affects the step size in the calculation of the numerical
gradients in the forward differencing and central differencing stages. They are (Function
Precision)1/2 and (Function Precision)1/3. In addition, since the OD proportions are in the
order of magnitude around 0.5, the changes are expected in the second decimal place,
hence the ideal choice for Function Precision is around 10-4. The choice of the optimality
tolerance is based on a trial and error type, however, as the tolerance is increased from
the default value of 1.0e-06, the line search is being relaxed. The iteration limit is set
based on some trial runs. It determines the termination condition if the optimal is not yet
found.

Begin OD-estimation
Minimize
Objective = Funobj
   Nonlinear variables 8
   Super basics limit 10
   Derivative Level 2
   Function Precision 1.0E-03
   Optimality Tolerance 1.0e-02
   MPS file 10
  Iterations limit 30
End OD-estimation
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Appendix C – Steps of the Reduced Gradient Algorithm as implemented in
MINOS
The following section is the steps of the algorithm as seen in (23).
Let ),,( NSB xxxx = be the current (feasible) value of x
1. Step 1
1.1 Evaluate 

Bx
F
∂

∂ at the current point

1.2 Calculate π and gA

2. If certain optimality tests on the reduced problem using the current set of
tolerances are met, go to step 7. (Test for convergence in the current subspace.)

3. Compute  πλ T
N Ng −=

4. If  λi  ≥ 0 when {xN}i  is at a lower bound and λi ≤ 0 when {xN}i  is at an upper
bound continue, go to step 6.
5. If the optimality tolerances on the reduced problem are ‘tight’ stop (Kuhn-Tucker
conditions are satisfied).
Replace the loose tolerances with the tight ones and go to step 7.
6. Add one or more non-basic variables to the super basic set.
7. Calculate the search direction vector dS

 and the maximum step length αS for the

superbasic variables. The scalar αS is the largest value such that SS dx  α+ satisfies the
bounds on xS.
8. Calculate the search direction vector dB

 and the maximum step length αB for the
basic variables. The vector dB is computed solving
BdB = -SdS

9. Line search: Let  α1 = min {αS, αB} and d = (dB, dS, 0). Find an approximate
solution α* to the one-dimensional optimization problem,
Minimize ) ( dxf α+

Subject to 0 ≤ α ≤ α1

10. Replace the current point with dx *α+ . If α* < α1 then go to Step 1 (no new
constraint was encountered so we remain in current subspace).
11. If a basic variable has reached a bound, make it non-basic and replace it with a
superbasic. If a superbasic has hit a bound, make it non-basic. Go to Step 1.

The two tolerances in the algorithm are TOLRG and TOLDJ. The first is used for the
check for convergence in the current subspace (Step 1). It is compared with the current
value of the reduced gradient, and if it is smaller, then the optimization moves into a new
sub-space or stays in the same sub-space. The other tolerance is the equivalent to
determining the entering variable into the basis in the simplex algorithm. If there aren’t
any, then the current solution is deemed optimal.
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Appendix D – Data and results for First Test Site
Assumed OD Matrix

D1 D2
O1 0.325 0.675
O2 0.25 0.75

On-ramp Counts

Day1 Day2 Day3 Day4 Day5
time slice O1 O2 O1 O2 O1 O2 O1 O2 O1 O2

1 158 2 172 7 175 7 150 8 152 7
2 198 1 183 2 202 0 185 1 197 1
3 255 3 277 4 257 4 244 5 243 5
4 264 3 281 4 283 1 231 3 261 6
5 284 7 305 15 301 14 316 13 303 8
6 344 4 354 5 352 7 381 5 394 6
7 379 10 380 12 340 14 356 22 388 12
8 393 9 383 14 400 10 405 12 436 12
9 439 1 431 1 425 1 438 0 463 0

10 518 2 477 2 511 2 483 0 485 1
11 452 27 416 26 419 23 420 20 408 14
12 389 11 442 17 402 13 421 11 389 11
13 429 14 467 16 420 11 402 5 408 9
14 461 11 475 14 505 13 461 16 471 11
15 408 39 412 41 395 38 422 46 399 35
16 402 11 426 7 400 17 426 11 410 12
17 354 33 366 31 376 42 346 26 361 40
18 397 13 400 13 418 9 420 7 394 14
19 411 8 386 11 415 17 388 9 406 11
20 324 18 332 19 367 24 356 14 346 30
21 378 26 408 27 404 22 375 17 418 19
22 370 13 387 20 375 13 393 12 376 10
23 394 35 375 33 380 27 377 33 369 34
24 424 13 379 13 385 12 407 11 382 16
25 483 4 415 2 444 5 495 6 511 9
26 390 19 390 24 382 16 350 11 396 12
27 445 18 431 12 395 22 454 13 418 24
28 404 36 388 30 399 32 395 24 386 40
29 470 8 470 5 462 9 482 3 414 1
30 412 7 409 15 372 15 409 8 401 10
31 425 42 404 35 418 39 469 38 416 32
32 435 31 427 34 412 25 437 32 448 32
33 415 9 451 13 421 13 417 14 401 12
34 448 17 483 14 482 12 450 18 461 11
35 377 23 400 32 382 29 388 38 386 24
36 340 42 334 38 352 48 378 46 387 44
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Off-ramp Counts

Day1 Day2 Day3 Day4 Day5
time slice D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

1 43 87 49 96 49 98 43 85 43 86
2 63 129 59 125 66 134 59 122 62 128
3 81 166 86 177 82 167 76 159 77 161
4 86 178 91 192 91 189 77 161 85 178
5 92 194 96 211 100 209 100 208 98 205
6 109 226 119 237 114 237 122 252 124 257
7 123 256 122 259 116 239 121 256 129 271
8 130 269 130 270 129 270 134 278 139 288
9 139 292 139 288 138 285 143 295 147 300

10 148 298 147 285 139 301 148 301 151 304
11 150 314 135 304 161 318 139 299 147 321
12 151 329 143 310 138 302 144 297 137 287
13 145 307 150 326 143 298 139 293 135 279
14 147 301 155 315 145 307 146 300 148 312
15 143 302 150 315 152 319 137 317 144 303
16 143 305 157 322 140 303 153 288 137 288
17 126 266 132 289 125 278 127 296 124 268
18 128 272 135 283 143 282 139 282 125 281
19 138 287 129 272 142 301 133 275 146 288
20 109 243 114 245 132 277 121 255 121 258
21 134 266 123 279 118 285 121 259 129 285
22 125 261 148 280 146 271 130 272 133 275
23 116 276 128 267 123 267 131 271 131 265
24 154 297 126 277 135 275 130 281 125 275
25 147 292 140 281 140 292 148 311 150 309
26 148 323 131 276 135 281 142 291 150 306
27 141 295 142 297 128 277 138 289 141 282
28 146 310 126 290 137 280 132 294 137 314
29 148 306 155 302 146 294 149 303 141 289
30 147 311 138 297 138 302 152 302 131 278
31 142 289 137 286 121 296 141 300 136 297
32 137 320 140 311 150 298 154 340 138 303
33 156 309 159 291 146 308 145 304 155 305
34 131 297 143 323 149 299 143 301 146 299
35 143 296 150 323 142 315 152 303 140 304
36 128 255 137 288 127 264 131 288 132 283

OD Matrix Estimate (Seed 1) OD Matrix Estimate (Seed 2)

d1 d2
o1 0.3097 0.6904
o2 0.5000 0.5000  

d1 d2
o1 0.3235 0.6765
o2 0.4051 0.5949

OD Matrix Estimate (Seed 3)
d1 d2

o1 0.3199 0.6801
o2 0.4367 0.5633
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Appendix E – Radical Data Set and Results for First Test Site

On-ramp counts Off-ramp counts
Day1 Day2 Day1 Day2

time slice O1 O2 O1 O2 D1 D2 D1 D2
1 164 7 82 45 46 92 32 72
2 191 1 96 45 61 127 41 96
3 254 5 127 45 79 165 49 116
4 263 3 132 45 87 180 55 122
5 308 13 154 45 99 207 59 134
6 356 5 178 45 115 241 68 152
7 380 13 190 45 124 259 71 158
8 409 13 205 45 135 282 78 171
9 448 1 224 45 135 285 81 182

10 474 1 237 45 149 318 87 191
11 429 23 215 45 155 316 83 183
12 396 13 198 45 135 289 77 171
13 425 10 213 45 144 295 80 175
14 468 14 234 45 144 304 86 188
15 408 39 204 45 142 306 78 178
16 415 10 208 45 143 299 79 173
17 359 33 180 45 132 272 73 160
18 405 13 203 45 135 286 75 169
19 393 11 197 45 136 273 75 167
20 344 20 172 45 119 255 68 154
21 393 21 197 45 127 274 73 161
22 383 13 192 45 128 270 74 168
23 388 34 194 45 129 276 74 163
24 416 14 208 45 140 291 76 168
25 466 5 233 45 150 301 86 189
26 377 15 189 45 139 294 76 171
27 420 18 210 45 133 294 78 174
28 398 30 199 45 141 286 77 169
29 454 5 227 45 150 311 82 181
30 400 12 200 45 138 287 78 172
31 414 36 207 45 134 290 74 171
32 425 28 213 45 130 289 82 177
33 430 11 215 45 163 307 79 178
34 465 17 233 45 147 324 86 186
35 390 31 195 45 141 309 80 174
36 354 42 177 45 126 263 70 162

OD Matrix Estimates
Seed 1 Seed 2 Seed 3

d1 d2
o1 0.3332 0.6669
o2 0.1834 0.8166  

d1 d2
o1 0.3135 0.6865
o2 0.3241 0.6759  

d1 d2
o1 0.3265 0.6735
o2 0.2488 0.7512
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Appendix F – Th-169 Site Section Parameters
section# lanes length(m)

1 2 98
2 3 129
3 2 200
4 3 343
5 2 670
6 2 1028
7 2 688
8 2 1013
9 2 562
10 3 538
11 2 331
12 3 202
13 2 323
14 3 460
15 2 590
16 2 830
17 2 371
18 3 130
19 2 327
20 2 684
21 2 167
22 3 655
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Appendix G – Th-169 Site Simulated Data Set and Results
Assumed OD matrix

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
O1 0.077 0.085 0.045 0.044 0.067 0.035 0.069 0.036 0.045 0.039 0.459
O2 0.077 0.085 0.045 0.044 0.067 0.035 0.069 0.036 0.045 0.039 0.459
O3 0 0.092 0.049 0.047 0.072 0.038 0.074 0.039 0.049 0.042 0.497
O4 0 0 0.054 0.052 0.079 0.042 0.082 0.043 0.054 0.046 0.547
O5 0 0 0 0.055 0.084 0.044 0.087 0.046 0.057 0.049 0.579
O6 0 0 0 0 0.089 0.047 0.092 0.048 0.06 0.051 0.613
O7 0 0 0 0 0 0.051 0.101 0.053 0.066 0.057 0.672
O8 0 0 0 0 0 0 0.106 0.056 0.07 0.06 0.709
O9 0 0 0 0 0 0 0 0.063 0.078 0.067 0.793
O10 0 0 0 0 0 0 0 0 0.083 0.071 0.846
O11 0 0 0 0 0 0 0 0 0 0.078 0.922
O12 0 0 0 0 0 0 0 0 0 0 1

On-ramp counts

time slice O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12
1 247 22 26 18 31 69 26 20 33 31 18 23
2 251 30 11 20 71 41 22 15 46 60 12 23
3 233 27 15 33 53 38 38 20 61 45 15 23
4 265 22 15 15 69 64 33 22 45 60 30 26
5 260 42 30 20 46 50 42 20 41 58 12 26
6 314 41 15 27 50 58 45 18 53 86 18 18
7 272 23 27 27 53 65 49 15 65 56 12 27
8 263 38 26 8 49 64 41 22 88 84 22 23
9 291 53 26 22 38 71 53 15 58 107 12 26
10 323 42 22 18 61 99 26 20 58 106 23 35
11 303 33 15 26 58 69 50 33 76 73 18 33
12 293 56 23 31 53 83 65 26 56 64 35 22
13 320 38 20 15 41 58 53 26 49 71 15 22
14 287 41 23 18 31 46 35 15 35 58 22 18
15 272 45 23 33 49 50 46 22 31 35 20 20
16 300 27 18 15 50 45 38 33 42 49 18 15
17 278 42 26 27 33 50 38 18 30 60 22 11
18 267 31 27 30 38 56 38 18 30 53 23 15
19 263 38 23 8 22 46 26 23 26 49 7 26
20 255 27 30 20 33 33 23 18 26 27 15 18
21 224 35 20 12 38 41 35 20 31 38 18 18
22 227 12 22 22 38 42 42 18 41 31 15 20
23 227 45 26 26 45 49 22 18 35 46 8 11
24 273 53 23 15 46 42 15 12 31 33 20 15
25 235 18 20 15 30 31 20 26 42 42 27 8
26 201 26 23 15 26 42 20 15 23 30 7 11
27 203 18 22 5 33 46 26 38 27 33 20 8
28 200 38 22 22 30 30 26 11 38 33 12 5
29 209 35 15 23 26 38 15 15 18 23 15 8
30 192 38 22 27 35 53 23 38 23 30 11 15
31 192 27 27 20 38 18 15 12 38 26 18 5
32 192 15 15 18 31 31 27 15 22 15 18 5
33 202 22 33 23 31 23 26 30 31 30 20 7
34 176 27 23 38 38 38 26 20 15 22 30 7
35 198 41 20 15 33 18 20 12 42 22 27 12
36 186 22 22 22 38 31 15 27 42 26 26 8
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Off-ramp counts

time slice D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
1 20 22 10 6 11 5 10 5 9 5 82
2 21 24 14 18 30 17 35 18 28 24 263
3 20 25 13 17 31 18 36 23 31 27 355
4 22 25 15 18 33 17 38 21 32 28 382
5 23 28 15 18 30 20 39 25 35 32 388
6 27 31 17 19 33 18 41 22 34 32 389
7 23 28 17 20 37 21 44 26 38 33 420
8 23 26 15 18 33 20 41 26 38 33 428
9 25 32 17 20 35 20 42 27 41 34 452
10 29 33 18 19 40 23 45 24 35 37 430
11 26 31 19 21 38 22 48 25 42 31 435
12 26 31 16 19 38 24 47 33 41 40 467
13 29 32 19 21 36 22 49 26 41 36 447
14 25 30 18 20 33 22 41 32 44 41 433
15 24 28 16 18 33 18 42 23 32 34 436
16 25 31 18 21 34 20 41 23 34 31 433
17 24 29 16 18 32 20 40 25 36 34 393
18 23 29 16 18 34 18 40 21 31 30 367
19 23 27 16 17 30 18 36 25 31 31 364
20 22 27 16 18 29 16 33 19 28 23 313
21 20 25 13 16 30 17 37 20 28 25 312
22 18 22 14 16 26 17 32 21 26 25 323
23 20 24 13 15 27 16 34 20 30 25 307
24 24 29 15 16 31 17 34 20 26 23 310
25 20 26 16 19 31 18 36 23 30 28 328
26 18 21 13 13 25 15 31 16 26 26 294
27 17 21 12 14 25 14 31 18 24 22 271
28 18 22 12 14 24 13 29 19 27 25 274
29 18 22 13 14 25 14 32 15 23 21 250
30 19 21 13 15 27 14 31 16 21 20 261
31 17 20 13 14 25 14 30 21 29 24 285
32 16 18 12 13 25 14 28 16 21 19 245
33 18 22 12 13 21 13 28 16 23 21 255
34 16 19 12 15 25 14 30 16 23 23 260
35 18 22 13 14 24 14 29 18 23 22 279
36 16 20 12 15 22 13 29 19 23 24 268

OD estimate from Seed 2

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
o1 0.0798 0.0889 0.0336 0.0479 0.0815 0.0429 0.0762 0.0300 0.0299 0.0103 0.4791
o2 0.0463 0.0486 0.0530 0.0375 0.0392 0.0014 0.0672 0.0510 0.0253 0.0526 0.5779
o3 0 0.0551 0.0341 0.0173 0.0769 0.0135 0.0836 0.0534 0.0235 0.0505 0.5922
o4 0 0 0.0518 0.0308 0.0717 0.0278 0.0646 0.0190 0.0681 0.0440 0.6222
o5 0 0 0 0.0288 0.0704 0.0279 0.0444 0.0551 0.0841 0.0539 0.6353
o6 0 0 0 0 0.0504 0.0535 0.0657 0.0530 0.0441 0.0675 0.6658
o7 0 0 0 0 0 0.0399 0.0793 0.0485 0.0596 0.0720 0.7006
o8 0 0 0 0 0 0 0.0977 0.0571 0.0494 0.0637 0.7321
o9 0 0 0 0 0 0 0 0.0613 0.0722 0.0569 0.8096

o10 0 0 0 0 0 0 0 0 0.0807 0.0774 0.8419
o11 0 0 0 0 0 0 0 0 0 0.0749 0.9252
o12 0 0 0 0 0 0 0 0 0 0 1.00        



G3

OD estimate from Seed 3

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
o1 0.0780 0.0860 0.0447 0.0441 0.0678 0.0343 0.0698 0.0360 0.0452 0.0389 0.4552
o2 0.0779 0.0857 0.0454 0.0445 0.0674 0.0353 0.0694 0.0362 0.0448 0.0388 0.4546
o3 0 0.0930 0.0492 0.0482 0.0731 0.0383 0.0752 0.0393 0.0486 0.0420 0.4930
o4 0 0 0.0543 0.0532 0.0806 0.0422 0.0829 0.0433 0.0536 0.0463 0.5436
o5 0 0 0 0.0563 0.0852 0.0446 0.0877 0.0458 0.0567 0.0490 0.5748
o6 0 0 0 0 0.0903 0.0473 0.0929 0.0485 0.0600 0.0519 0.6090
o7 0 0 0 0 0 0.0520 0.1021 0.0533 0.0660 0.0571 0.6695
o8 0 0 0 0 0 0 0.1077 0.0563 0.0696 0.0602 0.7062
o9 0 0 0 0 0 0 0 0.0631 0.0780 0.0675 0.7915

o10 0 0 0 0 0 0 0 0 0.0833 0.0721 0.8447
o11 0 0 0 0 0 0 0 0 0 0.0786 0.9214
o12 0 0 0 0 0 0 0 0 0 0 1.00        

OD estimate from Seed 5

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
o1 0.0766 0.0844 0.0448 0.0440 0.0670 0.0351 0.0692 0.0361 0.0450 0.0387 0.4589
o2 0.0766 0.0843 0.0448 0.0440 0.0670 0.0351 0.0693 0.0361 0.0451 0.0388 0.4590
o3 -1 0.0913 0.0486 0.0476 0.0726 0.0381 0.0750 0.0391 0.0488 0.0420 0.4971
o4 -1 -1 0.0534 0.0524 0.0799 0.0419 0.0825 0.0431 0.0537 0.0462 0.5470
o5 -1 -1 -1 0.0554 0.0844 0.0442 0.0872 0.0455 0.0567 0.0488 0.5778
o6 -1 -1 -1 -1 0.0893 0.0468 0.0923 0.0482 0.0601 0.0517 0.6117
o7 -1 -1 -1 -1 -1 0.0514 0.1014 0.0529 0.0659 0.0567 0.6717
o8 -1 -1 -1 -1 -1 -1 0.1068 0.0557 0.0695 0.0598 0.7081
o9 -1 -1 -1 -1 -1 -1 -1 0.0624 0.0778 0.0670 0.7928

o10 -1 -1 -1 -1 -1 -1 -1 -1 0.0830 0.0714 0.8456
o11 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.0779 0.9221
o12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.00        
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Appendix H – Th-169 Site Real Data Set and Results
On-ramp counts (3 days)
Day 1 (Nov 1 2002, 7am – 10am)

day 1
time O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

1 243 11 13 9 16 36 13 10 17 16 9 12
2 247 15 5 10 37 21 11 7 24 31 6 12
3 229 14 7 17 28 19 20 10 32 23 8 12
4 261 11 8 8 36 33 17 11 23 31 15 13
5 257 22 15 10 24 26 22 10 21 30 6 13
6 310 21 7 14 26 30 23 9 28 45 9 9
7 268 12 14 14 28 34 25 7 34 29 6 14
8 259 19 13 4 25 33 21 11 46 44 11 12
9 287 27 13 11 20 37 28 7 30 56 6 13
10 318 22 11 9 32 52 13 10 30 55 12 18
11 299 17 8 13 30 36 26 17 40 38 9 17
12 289 29 12 16 27 43 34 13 29 33 18 11
13 316 20 10 8 21 30 28 13 25 37 7 11
14 284 21 12 9 16 24 18 8 18 30 11 9
15 268 23 12 17 25 26 24 11 16 18 10 10
16 296 14 9 7 26 23 20 17 22 25 9 8
17 274 22 13 14 17 26 20 9 15 31 11 5
18 263 16 14 15 20 29 20 9 15 28 12 7
19 259 20 12 4 11 24 13 12 13 25 3 13
20 252 14 15 10 17 17 12 9 13 14 8 9
21 221 18 10 6 19 21 18 10 16 19 9 9
22 224 6 11 11 19 22 22 9 21 16 8 10
23 223 23 13 13 23 25 11 9 18 24 4 5
24 269 27 12 8 24 22 8 6 16 17 10 8
25 231 9 10 8 15 16 10 13 22 22 14 4
26 198 13 12 8 13 22 10 7 12 15 3 5
27 200 9 11 2 17 24 13 19 14 17 10 4
28 197 20 11 11 15 15 13 5 19 17 6 2
29 206 18 8 12 13 19 8 8 9 12 8 4
30 189 20 11 14 18 28 12 20 12 15 5 7
31 189 14 14 10 20 9 8 6 19 13 9 2
32 189 7 7 9 16 16 14 8 11 8 9 2
33 199 11 17 12 16 12 13 15 16 15 10 3
34 174 14 12 19 20 19 13 10 8 11 15 3
35 195 21 10 8 17 9 10 6 22 11 14 6
36 183 11 11 11 20 16 7 14 22 13 13 4
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Day 2 (Nov 2 2002, 7am – 10am)

day 2
time O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

1 220 11 8 12 13 38 16 14 15 28 5 11
2 222 8 16 4 33 13 18 12 29 25 7 16
3 228 16 10 8 31 36 17 12 29 28 19 12
4 298 10 10 12 30 32 22 11 19 33 9 18
5 266 12 12 12 31 19 21 14 20 36 5 7
6 313 18 12 11 24 24 39 10 30 32 9 11
7 288 15 12 12 33 31 20 16 27 21 2 18
8 274 15 11 12 19 40 21 14 31 43 17 14
9 313 14 12 8 27 36 27 13 37 51 8 9
10 298 16 12 13 31 37 24 13 35 46 14 15
11 269 27 10 12 31 36 28 17 34 44 9 16
12 296 26 13 12 27 43 29 22 28 29 10 15
13 296 18 15 5 22 34 31 12 28 34 10 15
14 295 20 10 6 23 25 15 11 20 33 9 3
15 273 18 13 9 19 24 16 9 17 23 3 8
16 265 20 12 13 27 23 19 13 21 27 10 10
17 240 13 13 9 20 30 11 13 16 14 7 12
18 243 16 18 9 21 31 12 3 23 27 9 12
19 229 17 11 17 10 20 10 15 21 15 6 6
20 223 8 16 14 7 19 17 5 15 10 11 9
21 259 12 7 12 21 27 7 7 16 14 6 11
22 239 16 12 7 21 29 15 5 13 22 4 10
23 229 15 11 13 34 18 10 12 10 21 9 12
24 215 13 11 15 18 22 16 13 27 24 11 9
25 222 15 11 5 24 22 10 10 17 22 15 4
26 173 12 11 15 17 9 16 13 17 19 10 6
27 182 22 8 10 18 12 12 8 18 19 10 2
28 184 14 10 16 17 21 7 11 17 13 9 7
29 203 15 7 12 20 12 11 7 6 16 7 9
30 223 21 8 13 6 16 11 18 16 15 11 6
31 202 14 11 7 17 16 10 8 20 12 6 9
32 214 14 9 10 21 15 15 8 17 15 13 7
33 198 17 12 11 11 14 14 5 17 3 6 7
34 229 16 7 13 16 16 12 14 13 14 12 5
35 207 13 15 14 21 8 8 12 14 10 8 1
36 207 6 11 11 15 17 9 11 13 14 15 3



H3

Day 3 (Nov 3 2002, 7am – 10am)

day 3
time O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

1 240 14 12 6 21 23 13 11 15 23 9 5
2 243 9 10 5 37 22 5 9 20 31 10 10
3 238 14 6 11 25 21 21 10 27 24 11 13
4 240 12 5 8 39 28 16 12 26 16 10 10
5 297 16 12 8 35 27 19 12 30 30 9 8
6 282 11 11 8 28 29 20 3 26 36 7 10
7 270 16 13 8 23 29 23 15 33 34 4 18
8 300 16 11 10 14 33 20 12 29 31 13 9
9 318 15 16 16 33 28 32 8 27 29 11 12
10 291 16 7 17 35 32 29 21 33 31 6 11
11 285 25 12 18 23 44 21 13 32 44 11 19
12 312 20 12 4 39 50 34 14 28 21 12 6
13 272 14 7 18 24 28 21 14 23 33 6 7
14 300 21 13 9 22 22 21 5 21 28 9 16
15 245 18 14 15 24 23 14 12 16 29 9 4
16 279 13 13 16 15 14 15 12 16 17 5 6
17 278 13 10 16 16 32 10 16 21 25 5 20
18 264 18 14 14 31 25 12 12 15 17 3 8
19 267 15 11 9 20 24 13 11 26 8 5 11
20 257 10 18 4 26 26 11 5 21 10 7 13
21 223 9 11 9 19 23 15 13 18 15 5 10
22 206 16 14 17 20 22 14 11 20 17 7 7
23 212 18 14 10 19 10 13 16 13 12 6 9
24 218 19 10 8 28 27 15 10 23 15 5 11
25 227 17 17 12 26 22 13 11 21 20 11 8
26 205 19 8 12 18 20 11 16 25 19 13 3
27 230 13 17 10 18 14 7 11 13 8 7 8
28 229 15 9 14 24 22 13 10 15 19 12 3
29 187 18 6 12 12 15 8 12 10 13 13 8
30 203 7 15 10 22 20 5 23 15 12 4 6
31 181 17 8 20 15 18 8 18 16 15 6 4
32 206 9 13 10 14 16 9 11 14 11 8 4
33 200 11 7 20 19 9 15 19 12 15 10 7
34 171 7 10 12 19 15 17 7 21 13 10 6
35 183 21 17 11 22 20 9 13 16 13 10 14
36 197 10 16 12 28 10 12 12 13 16 7 2
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Off-ramp counts (3 days)
Day 1 (Nov 1 2002, 7am – 10am)

time D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
1 31 30 22 28 45 18 32 14 16 15 179
2 35 34 22 27 29 12 32 16 25 19 187
3 24 39 15 34 12 13 24 14 14 23 203
4 32 27 18 28 26 11 36 16 16 23 204
5 35 27 19 27 21 14 39 12 24 27 230
6 40 33 24 23 28 11 39 17 18 14 228
7 36 44 23 26 34 18 55 23 46 28 230
8 43 32 17 25 22 12 30 19 30 25 245
9 45 41 24 17 26 9 37 20 16 25 257
10 41 39 19 16 27 24 34 23 28 24 263
11 48 39 23 17 42 15 50 14 34 34 305
12 38 44 21 24 35 18 46 14 23 25 285
13 52 51 21 25 30 13 41 22 21 16 240
14 51 67 26 18 37 13 41 19 31 19 215
15 44 59 21 21 35 9 29 19 17 17 207
16 44 64 26 14 27 10 30 16 19 21 194
17 40 46 25 22 28 20 27 11 21 21 203
18 40 59 18 11 32 17 30 12 24 20 192
19 40 52 12 11 19 7 35 16 30 18 200
20 34 40 17 15 36 22 16 14 21 6 183
21 27 45 12 8 24 21 23 15 22 10 184
22 36 30 20 16 46 19 28 10 25 13 183
23 27 21 20 22 22 18 19 17 14 9 162
24 37 40 20 22 21 26 36 17 13 14 167
25 29 40 20 25 29 17 22 21 14 16 180
26 25 26 19 18 58 22 23 18 9 9 162
27 27 20 16 15 22 20 19 10 15 9 151
28 16 35 18 18 26 15 22 13 17 9 165
29 20 24 15 18 28 12 23 12 11 7 166
30 17 25 23 11 25 17 25 13 19 13 160
31 26 28 19 12 27 19 23 9 17 8 171
32 19 30 13 12 19 13 19 22 8 12 134
33 22 22 22 10 20 10 17 8 7 12 172
34 21 21 24 17 18 7 25 16 12 19 172
35 27 19 14 11 37 8 18 13 7 11 162
36 22 22 15 14 18 15 20 17 15 7 173
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Day 2 (Nov 2 2002, 7am – 10am)

time D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
1 28 29 20 26 47 17 48 16 19 16 184
2 29 35 16 29 26 10 19 12 19 17 179
3 28 33 13 28 34 12 36 14 22 21 204
4 30 29 20 32 24 17 31 21 13 16 209
5 37 37 12 23 38 12 37 18 26 20 225
6 39 37 17 25 21 11 36 22 36 23 222
7 42 36 33 26 36 9 48 13 33 22 279
8 32 33 27 17 24 18 35 19 25 23 269
9 44 40 22 21 37 14 33 14 23 20 226
10 49 40 26 24 51 15 44 14 35 28 305
11 30 41 16 19 34 22 34 30 26 19 272
12 48 44 23 24 31 15 47 23 33 27 236
13 33 69 33 20 43 21 45 13 24 29 256
14 49 54 25 18 22 14 42 19 22 19 206
15 46 53 21 13 46 12 33 14 29 19 177
16 47 43 27 21 46 16 26 16 19 17 180
17 44 54 17 13 28 12 25 16 28 18 213
18 41 43 12 17 20 16 25 17 21 19 161
19 42 46 12 14 28 14 24 14 27 16 171
20 30 47 18 16 18 13 24 19 20 13 181
21 33 45 23 17 21 17 25 13 12 9 152
22 31 30 26 15 26 28 29 15 23 13 178
23 36 32 21 15 24 23 27 12 23 5 177
24 21 39 26 22 33 12 28 17 16 11 187
25 28 34 15 18 33 24 19 22 15 8 184
26 24 23 16 17 30 11 18 16 12 7 173
27 24 28 7 18 16 10 13 14 11 7 180
28 32 19 15 15 39 8 28 12 18 5 140
29 20 30 11 26 29 20 22 12 10 6 157
30 32 23 19 13 20 13 23 12 7 14 148
31 15 21 20 18 40 10 20 12 8 15 187
32 32 24 14 16 31 19 22 19 7 8 185
33 31 23 17 22 10 10 17 23 10 13 153
34 9 38 17 18 20 13 11 13 10 8 175
35 19 26 16 24 24 14 27 23 17 14 171
36 25 27 22 18 35 11 24 18 17 10 142
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Day 3 (Nov 3 2002, 7am – 10am)

time D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
1 36 30 13 30 19 12 32 18 20 25 168
2 26 31 18 31 28 4 36 10 19 15 175
3 24 26 16 22 22 13 26 4 19 22 209
4 31 31 20 35 16 12 41 17 17 18 215
5 31 39 15 31 19 9 34 11 27 14 220
6 27 35 39 22 37 17 38 17 35 20 223
7 30 52 25 17 28 8 36 16 15 12 237
8 30 45 18 15 36 8 41 15 21 13 239
9 37 37 25 28 27 14 40 22 33 23 245
10 35 38 16 27 28 18 41 28 19 28 282
11 38 40 20 22 35 19 39 17 22 28 268
12 44 53 22 18 34 24 35 20 31 20 240
13 36 50 20 22 30 14 42 31 28 21 260
14 44 53 26 20 24 8 38 15 28 25 212
15 40 49 25 18 37 15 32 18 25 12 209
16 41 46 19 8 16 13 34 13 20 19 160
17 47 30 26 19 18 17 31 12 24 22 184
18 44 52 21 21 25 19 24 19 18 19 211
19 38 48 12 20 26 18 28 16 17 20 197
20 40 45 24 21 6 18 33 18 21 10 188
21 38 33 18 8 6 18 21 16 22 14 177
22 27 22 14 10 7 13 26 16 23 8 166
23 33 32 22 19 13 18 25 8 11 6 194
24 28 34 18 17 14 21 24 18 15 6 168
25 21 37 27 15 15 16 25 20 15 11 184
26 25 31 17 17 17 17 20 13 20 13 192
27 29 24 20 20 12 14 15 18 16 3 165
28 21 32 21 17 21 19 21 17 11 15 175
29 20 19 17 12 27 16 28 18 26 15 166
30 26 22 15 13 13 13 19 13 9 9 185
31 24 17 23 17 25 20 19 16 13 9 162
32 22 22 8 17 19 21 17 14 7 14 174
33 26 26 14 18 13 11 12 19 12 9 169
34 21 25 15 14 23 7 19 15 13 11 183
35 16 11 13 14 16 18 18 18 15 7 178
36 30 26 21 16 21 15 25 27 10 13 150
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OD estimate – 1 day data

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
o1 0.1380 0.1414 0.0641 0.0517 0.0515 0.0388 0.0861 0.0000 0.0281 0.0000 0.4003
o2 0.0224 0.0629 0.0793 0.0658 0.1850 0.0490 0.0501 0.2530 0.0586 0.0318 0.1422
o3 0 0.0546 0.0770 0.0951 0.2531 0.0677 0.0770 0.0620 0.0539 0.0747 0.1851
o4 0 0 0.0821 0.0910 0.2068 0.0737 0.1106 0.0817 0.0521 0.0943 0.2076
o5 0 0 0 0.1259 0.2014 0.0568 0.0488 0.0413 0.0620 0.0803 0.3836
o6 0 0 0 0 0.1418 0.0000 0.0738 0.1050 0.1074 0.1378 0.4343
o7 0 0 0 0 0 0.0642 0.0391 0.1076 0.0445 0.1167 0.6279
o8 0 0 0 0 0 0 0.0744 0.0506 0.0733 0.0906 0.7112
o9 0 0 0 0 0 0 0 0.1229 0.0796 0.0535 0.7440
o10 0 0 0 0 0 0 0 0 0.0770 0.0883 0.8348
o11 0 0 0 0 0 0 0 0 0 0.1003 0.8997
o12 0 0 0 0 0 0 0 0 0 0 1

OD estimate – 1 day data (with warm-up)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

o1 0.1312 0.1489 0.0687 0.0469 0.0864 0.0296 0.0986 0.0307 0.0692 0.0316 0.2583
o2 0.1075 0.1088 0.0688 0.0342 0.0307 0.0597 0.0710 0.0486 0.0000 0.0540 0.4167
o3 0 0.1348 0.0445 0.0455 0.0853 0.0554 0.0611 0.0253 0.0268 0.0194 0.5020
o4 0 0 0.0647 0.0780 0.0748 0.0371 0.0350 0.0799 0.0172 0.0455 0.5679
o5 0 0 0 0.1106 0.0841 0.0336 0.0685 0.0588 0.0000 0.0305 0.6139
o6 0 0 0 0 0.0875 0.0442 0.0513 0.0703 0.0414 0.0425 0.6629
o7 0 0 0 0 0 0.0553 0.1168 0.0445 0.0213 0.0290 0.7332
o8 0 0 0 0 0 0 0.0694 0.0715 0.0593 0.0431 0.7567
o9 0 0 0 0 0 0 0 0.0576 0.0548 0.0587 0.8289
o10 0 0 0 0 0 0 0 0 0.0572 0.0708 0.8721
o11 0 0 0 0 0 0 0 0 0 0.0659 0.9341
o12 0 0 0 0 0 0 0 0 0 0 1

OD estimate – 3 days data
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

o1 0.1218 0.1356 0.0667 0.0483 0.0388 0.0305 0.0710 0.0273 0.0355 0.0137 0.4109
o2 0.0754 0.0660 0.0900 0.0796 0.1888 0.0681 0.0826 0.0646 0.0611 0.0741 0.1498
o3 0 0.0535 0.0767 0.1004 0.2040 0.0773 0.0855 0.0703 0.0582 0.0729 0.2011
o4 0 0 0.0755 0.0955 0.2013 0.0772 0.0839 0.0662 0.0604 0.0842 0.2558
o5 0 0 0 0.1035 0.1746 0.0906 0.0807 0.0546 0.0570 0.0828 0.3563
o6 0 0 0 0 0.1827 0.0775 0.0858 0.0429 0.0556 0.0918 0.4637
o7 0 0 0 0 0 0.0572 0.1015 0.0630 0.0525 0.0870 0.6388
o8 0 0 0 0 0 0 0.0773 0.0628 0.0615 0.0888 0.7097
o9 0 0 0 0 0 0 0 0.0608 0.0583 0.0780 0.8030
o10 0 0 0 0 0 0 0 0 0.0589 0.0764 0.8646
o11 0 0 0 0 0 0 0 0 0 0.0764 0.9297
o12 0 0 0 0 0 0 0 0 0 0 1

OD estimate – 3 days data (New Objective Function)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

o1 0.1333 0.1438 0.0700 0.0558 0.0434 0.0285 0.0774 0.0291 0.0358 0.0119 0.3711
o2 0.0746 0.0654 0.0825 0.0847 0.1853 0.0756 0.0845 0.0635 0.0619 0.0802 0.1418
o3 0 0.0582 0.0796 0.0947 0.2023 0.0791 0.0837 0.0681 0.0529 0.0847 0.1967
o4 0 0 0.0757 0.0960 0.2012 0.0750 0.0847 0.0699 0.0571 0.0846 0.2557
o5 0 0 0 0.0983 0.1782 0.0848 0.0915 0.0596 0.0630 0.0740 0.3505
o6 0 0 0 0 0.1856 0.0673 0.0925 0.0566 0.0564 0.0888 0.4528
o7 0 0 0 0 0 0.0570 0.0976 0.0666 0.0541 0.0875 0.6371
o8 0 0 0 0 0 0 0.0818 0.0644 0.0559 0.0879 0.7100
o9 0 0 0 0 0 0 0 0.0594 0.0614 0.0764 0.8028
o10 0 0 0 0 0 0 0 0 0.0579 0.0742 0.8678
o11 0 0 0 0 0 0 0 0 0 0.0777 0.9223
o12 0 0 0 0 0 0 0 0 0 0 1



H8

OD estimate – 3 days data (2-step optimization)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
o1 0.1252 0.1364 0.0636 0.0545 0.0377 0.0225 0.0740 0.0304 0.0352 0.0096 0.4109
o2 0.0755 0.0664 0.0898 0.0797 0.1889 0.0667 0.0835 0.0648 0.0612 0.0737 0.1498
o3 0 0.0538 0.0771 0.1008 0.2016 0.0777 0.0858 0.0703 0.0586 0.0733 0.2011
o4 0 0 0.0755 0.0955 0.2013 0.0768 0.0839 0.0662 0.0608 0.0842 0.2558
o5 0 0 0 0.1056 0.1762 0.0891 0.0807 0.0534 0.0576 0.0811 0.3563
o6 0 0 0 0 0.1829 0.0766 0.0869 0.0431 0.0559 0.0909 0.4637
o7 0 0 0 0 0 0.05647 0.1016 0.0627 0.0531 0.0872 0.6388
o8 0 0 0 0 0 0 0.0771 0.0629 0.0605 0.0898 0.7097
o9 0 0 0 0 0 0 0 0.060304 0.0593 0.0774 0.8030
o10 0 0 0 0 0 0 0 0 0.0597 0.0757 0.8646
o11 0 0 0 0 0 0 0 0 0 0.0703 0.9297
o12 0 0 0 0 0 0 0 0 0 0 1
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APPENDIX I – External Sub-Routines Used in OD Estimation Program
The initial subroutine to set-up the program in MINOS
C
C initial - initializes the data
C calculates bfix, actual off-ramp counts and the weights
C opens a file to pass comments during the running (unit=3)
C

subroutine initial()

      implicit                   double precision (a-h,o-z)
      integer                     nor,ndes,ntime,ndays,nod,i,j,k,callno
      parameter                (nor=12,ndes=11,ntime=36,ndays=1)
      double precision     b(nor,ndes),bb(nor*ndes),bfix(nor,ndes)
      double precision     aoffrc(ndays,ntime,ndes),onrc(ndays,ntime,nor)
      double precision     bl(nor*ndes),bu(nor*ndes)
      character*(*)          paths,ftype
      parameter               (paths=’paths.dat’,ftype=’f8.4’)
      character*80          odfile,offile,outfile,mpsfile,scefile,olist,dlist
      character*80          onfile,countsfile,ttfile,oldfile,simoffile
      double precision    avgoff(ndays,ndes),sumoff(ndays,ndes)
      double precision    weight(ndays,ndes),stdevoff(ndays,ndes)
      double precision    varoff(ndays,ndes),ssoff(ndays,ndes),coefft
      parameter               (coefft=1.0d+0)
      character*200        fmttype

common /matrix/bfix
common /off/aoffrc
common /weights/weight
common /callid/callno
common /pathod/odfile
common /pathsce/scefile
common /pathtt/onfile,olist,dlist,ttfile
common /pathget/countsfile
common /pathsimoff/simoffile

open(unit=1,file=paths,status=’old’)
callgetpaths(1,odfile,oldfile,offile,outfile,mpsfile,scefile,olist

&t,dlist,onfile,ttfile,countsfile,simoffile)
close(1)

C
C unit=3 is the file to send stuff to track the pgm
C

open(unit=3,file=outfile,status=’old’)

C
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C get the OD matrix and the offramp counts
C

open(unit=1,file=oldfile,status=’old’)
open(unit=2,file=offile,status=’old’)
call read2d(1,b,nor,ndes)
call read3d(2,aoffrc,ndays,ntime,ndes)
close(1)
close(2)

C
C unstack matrix and send useful entries
C

nod = 0
do 20 i=1,nor

do 30 j=1,ndes
if ((b(i,j).eq.-1.0d+0)) then

bfix(i,j) = 0.0d+0
else if (b(i,j).eq.1.0d+0) then

bfix(i,j) = 1.0d+0
else
bfix(i,j) = -1.0d+0
nod = nod + 1
bb(nod) = b(i,j)
end if

30    continue
20 continue
write(3,*) ‘Inside initial’
write(3,*) ‘the # of independent var =’,nod
write(3,*) ‘the OD matrix ‘
do 40 i=1,nor

         write(3,*) (b(i,j),j=1,ndes)
40 continue
write(3,*) ‘the bfix matrix ‘
do 50 i=1,nor

         write(3,*) (bfix(i,j),j=1,ndes)
50 continue
do 55 i=1,nod

bl(i) = 0.0d+0
bu(i) = 1.0d+0

55 continue
C
C write the needed info into the MPS file
C

open(unit=4,file=mpsfile,status=’old’)
write(4,’(a4)’) ‘NAME’
write(4,’(a4)’) ‘ROWS’
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do 60 i=1,nor
if (bfix(i,ndes).lt.0.0d+0) then

write(4,’(t2,a1,t5,a3,i3.3)’) ‘E’,’ORI’,i
end if

60 continue
write(4,’(a7)’) ‘COLUMNS’
k=0
do 65 i=1,nor

do 70 j=1,ndes
if (bfix(i,j).lt.0.0d+0) then

k=k+1
write(4,’(t5,a1,i3.3,t15,a3,i3.3,t25,f11.7)’) ‘X’,k,’ORI

&’,i,coefft
end if
   70   continue
   65 continue

      write(4,’(a3)’) ‘RHS’
      do 75 i=1,nor
         if (bfix(i,(ndes-1)).lt.0.0d+0) write(4,’(t5,a7,t15,a3,i3.3,t25
     &,f11.7)’) ‘DEMANDS’,’ORI’,i,coefft
   75 continue

      write(4,’(a6)’) ‘BOUNDS’
      do 85 i=1,nod
        write(4,’(t2,a2,t5,a6,t15,a1,i3.3,t25,f11.7)’) ‘LO’,’BOUND1’,’X’
     &,i,bl(i)
        write(4,’(t2,a2,t5,a6,t15,a1,i3.3,t25,f11.7)’) ‘UP’,’BOUND1’,’X’
     &,i,bu(i)
   85 continue
      do 90 i=1,nod
       write(4,’(t2,a2,t5,a7,t15,a1,i3.3,t25,f11.7)’) ‘FX’,’INITIAL’,’X’
     &,i,bb(i)
   90 continue
      write(4,’(a6)’) ‘ENDATA’
      close(4)
C
C  calculate the weights from the off-ramp counts
C

do 93 i=1,ndays
do 95 j=1,ndes
sumoff(i,j) = 0.0d+0
avgoff(i,j) = 0.0d+0
do 100 k=1,ntime
sumoff(i,j)=sumoff(i,j)+aoffrc(i,k,j)

  100     continue
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          avgoff(i,j)=sumoff(i,j)/ntime
   95   continue
   93 continue

      do 103 i=1,ndays
        do 105 j=1,ndes
          ssoff(i,j) = 0.0d+0
          varoff(i,j) = 0.0d+0
          stdevoff(i,j) = 0.0d+0
          weight(i,j) = 0.0d+0
          do 110 k=1,ntime
            ssoff(i,j)=ssoff(i,j)+((aoffrc(i,k,j)-avgoff(i,j))**2)
  110     continue
          varoff(i,j) = ssoff(i,j)/(ntime-1)
          stdevoff(i,j) = sqrt(varoff(i,j))
          weight(i,j) = 1.0d+0/stdevoff(i,j)
  105   continue
103 continue

write(3,*) ‘the weights are’
do 115 i=1,ndays

write(3,120) ‘Day ‘,i,’ :’
call retfmt(ftype,ndes,fmttype)
write(3,fmt=fmttype) (weight(i,j),j=1,ndes)

115 continue
120 format(a,i1,a,$)

write(3,*) ‘Exiting Initial’
callno=1

end
C
C
subroutine read2d(fnum,matrix,row,col)
      integer                   fnum,row,col,i,j,k
      double precision   matrix(row,col)
      character*10         comment

read(fnum,*) comment
do 200 j=1,row
read(fnum,*) (matrix(j,k),k=1,col)

200  continue
end

subroutine read3d(fnum,matrix,ht,row,col)

      integer                   fnum,row,ht,col,i,j,k
      double precision   matrix(ht,row,col)
      character*10         comment
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do 300 i=1,ht
read(fnum,*) comment
do 310 j=1,row
read(fnum,*) (matrix(i,j,k),k=1,col)

310   continue
300  continue
end

subroutine getpaths(fnum,odfile,oldfile,offile,outfile,mpsfile,sce

&file,olist,dlist,onfile,ttfile,countsfile,simoffile)
      integer              fnum
      character*80    odfile,offile,outfile,mpsfile,comment,scefile
      character*80    olist,dlist,onfile,ttfile,countsfile,oldfile
      character*80    simoffile

read(fnum,*) comment
read(fnum,*) odfile
read(fnum,*) oldfile
read(fnum,*) onfile
read(fnum,*) offile
read(fnum,*) simoffile
read(fnum,*) outfile
read(fnum,*) mpsfile
read(fnum,*) scefile
read(fnum,*) olist
read(fnum,*) dlist
read(fnum,*) ttfile
read(fnum,*) countsfile

end
C
C
subroutine retfmt(ftype,nrep,fmttype)
      integer              nrep,i
      character*(*)   fmttype,ftype

fmttype=ftype//’)’
do 400 i=1,nrep

if (i.ne.nrep) fmttype = ftype//’,’//fmttype
400 continue

fmttype=’(‘//fmttype
end
The subroutine to calculate the time sliced trip table and write to AIMSUN readable

format
C
C subroutine that reads the od matrix and creates the trip table
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C and writes into the aimsun readable format file Matrix.des
C
subroutine ttable(ndays,nor,ndes,ntime,day)
      implicit                 double precision (a-h,o-z)
      integer                  nor,ndes,ntime,ndays,day
      double precision   b(nor,ndes)
      double precision   onrc(ndays,ntime,nor)
      integer                  tt(ntime,nor,ndes)
      integer                  origin(nor),destination(ndes)
      character*80        dfile,odfile,ttfile,olist,dlist
      integer                  i,j,k

common /pathod/odfile
common /pathtt/dfile,olist,dlist,ttfile

open(unit=1,file=odfile,status=’old’)
open(unit=2,file=dfile,status=’old’)
open(unit=14,file=olist,status=’old’)
open(unit=5,file=dlist,status=’old’)
call read2d(1,b,nor,ndes)
call read3d(2,onrc,ndays,ntime,nor)
call get(nor,origin,14)
call get(ndes,destination,5)
close(1)
close(2)
close(14)
close(5)

call ttcal(b,onrc,ndays,nor,ndes,ntime,tt,day)
open(unit=7,file=ttfile,status=’old’)
call fwrite(tt,ntime,nor,ndes,origin,destination,7)
close(7)

end
C
C ttcal - calculates the trip table from the OD matrix
C and the on-ramp counts
C
subroutine ttcal(b,onrc,ndays,nor,ndes,ntime,tt,day)

integer nor,ndes,ntime,i,j,k,ndays,day
double precision  b(nor,ndes), onrc(ndays,ntime,nor)
integer                 tt(ntime,nor,ndes)

do 100 i=1,ntime
do 110 j=1,nor

do 120 k=1,ndes
if (b(j,k).gt.0.0d+0) then



I7

tt(i,j,k) = nint(b(j,k)*onrc(day,i,j))
else
tt(i,j,k) = 0
end if
 120        continue
 110     continue
100  continue
end

C
C fwrite - writes the trip table entries into the AISMSUN
C readable format file Matrix.des
C
subroutine fwrite(tt,ntime,nor,ndes,origin,destination,fnum)
      integer            fnum,nor,ndes,ntime,i,j,k
      integer            tt(ntime,nor,ndes)
      integer            start,end,delt
      integer            origin(nor),destination(ndes)
      parameter          (start=0,end=180,delt=5)

integer nveh,nvehcl,npoll,nguide,ndrive
parameter (nveh=1,nvehcl=0,npoll=0,nguide=0,ndrive=1)
real length(4),width(4),maxds(4),maxacc(4),nordec(4),maxdec(4)
real speeda(4),mindis(4),givtim(4),guiacc(4)
real fuelp(7)
real crutol
parameter (crutol = 0.0)

data fuelp/7*0.0/
data length/3*4.0,0.0/
data width/3*2.0,0.0/
data maxds/3*80.0,0.0/
data maxacc/3*3.0,0.0/
data nordec/3*4.0,0.0/
data maxdec/3*6.0,0.0/
data speeda/3*1.0,0.0/
data mindis/3*1.0,0.0/
data givtim/3*30.0,0.0/
data guiacc/3*1.0,0.0/
write(fnum,’(a)’)’* ODMatrix description, file name D:\\temp\\new_
&site\\odm\\Matrix.des’
write(fnum,’(a)’) ‘* Version’
write(fnum,’(a)’) ‘@3.100000’
write(fnum,’(a)’) ‘*  Number of vehicle types’
write(fnum,’(I1.1)’) nveh
write(fnum,’(a)’) ‘*  Vehicle Type Name’
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write(fnum,’(a)’) ‘@car’
write(fnum,’(a)’)’*    number of vehicle type classes it pertains’
write(fnum,’(t6,i1.1)’) nvehcl
write(fnum,’(a)’) ‘*    fuel-consumption parameters’
write(fnum,’(t4,7f7.3)’) fuelp
write(fnum,’(a)’) ‘*    number of pollutants’
write(fnum,’(t6,i1.1)’) npoll
write(fnum,’(a)’) ‘*      guided vehicles’
write(fnum,’(t6,f7.3)’) nguide
write(fnum,’(a)’) ‘*      number of driver types’
write(fnum,’(t8,i1.1)’) ndrive
write(fnum,’(a)’) ‘     100.000’
write(fnum,’(a)’) ‘*  length (min, max, mean, deviation)’
write(fnum,’(t2,4f7.3)’) length
write(fnum,’(a)’) ‘*  width (min, max, mean, deviation)’
write(fnum,’(t2,4f7.3)’) width
write(fnum,’(a)’) ‘*  maximum desired speed (min, max, mean,deviat
&ion)’
write(fnum,’(t2,4f8.3)’) maxds
write(fnum,’(a)’) ‘*  maximum acceleration (min, max, mean, deviat
&ion)’
write(fnum,’(t2,4f7.3)’) maxacc
write(fnum,’(a)’) ‘*  normal deceleration (min, max, mean, deviati
&on)’
write(fnum,’(t2,4f7.3)’) nordec
write(fnum,’(a)’) ‘*  maximum deceleration (min, max, mean, deviat
&ion)’
write(fnum,’(t2,4f7.3)’) maxdec
write(fnum,’(a)’)’*  speed acceptance (min, max, mean, deviation)’
write(fnum,’(t2,4f7.3)’) speeda
write(fnum,’(a)’)’*  minimum distance between vehicles (min, max,
&mean, deviation)’
write(fnum,’(t2,4f7.3)’) mindis
write(fnum,’(a)’) ‘*  give-way time (min, max, mean, deviation)’
write(fnum,’(t2,4f8.3)’) givtim
write(fnum,’(a)’) ‘*  guidance acceptance (min, max, mean, deviati
&on)’
write(fnum,’(t2,4f7.3)’) guiacc
write(fnum,’(a)’) ‘* cruising tolerance’
write(fnum,’(f7.5)’) crutol
write(fnum,’(a)’)’* time begin, time end, nb.fixed intervals’
write(fnum,’(i4,i4,i4)’) start,end,ntime
do 300 i=1,ntime
write(fnum,*) delt

300 continue

write(fnum,’(a)’) ‘* number of statements’
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write(fnum,*) (nor*ndes)

do 310 i=1,nor
do 320 j=1,ndes
write(fnum,’(a)’)’* statement -------------------------------‘
write(fnum,’(a)’)’* idcentroids: origin, dest.  nbvehmods’
write(fnum,’(i4,i4,i4)’) origin(i),destination(j),nveh
write(fnum,’(a)’) ‘@car’
write(fnum,’(a)’) ‘* time function type’
write(fnum,*) ‘0’
do 330 k=1,ntime
write(fnum,*) tt(k,i,j)

330   continue
320  continue
310 continue
end
C
C get - reads an array from the file
C
subroutine get(row,array,fnum)
      character*15    comment
      integer              row,fnum,i
      integer              array(row)

read(fnum,’(a)’) comment
do 500 i=1,row
read(fnum,*) array(i)

500 continue
end

Subroutine to get the off-ramp counts
subroutine retoff(ndes,ntime)
      integer      ntime,ndes,i,j
      integer       offrc(ntime,ndes)
      real            soffrc(ntime,ndes)
      character   ftype*(*),fmttype*200
      parameter   (ftype=’f6.1’)
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call getoff(offrc,ntime,ndes)
do 130 i=1,ntime
do 135 j=1,ndes

soffrc(i,j) = 1.0*offrc(i,j)

  135    continue
         call retfmt(ftype,ndes,fmttype)
         write(19,fmt=fmttype) (soffrc(i,j),j=1,ndes)
130 continue
end

subroutine getoff(off,ntime,ndes)

      integer           ntime,ndes,start,end,delta
      integer            off(ntime,ndes)
      integer            i,j,hour,min

character*(*)  pathname
parameter      (pathname=’c:\\thesis\\progra~1\\169thesis\\odm\\Aim
&sun\\’,start=0,end=180)

      character        fname*12,buffer*80,full*80
      character*32   counts(ndes)

delta=(end-start)/ntime
do 100 i=1,ntime

hour = int(i*delta/60) + int(start/60)
min = mod((mod(start,60)+delta*i),60)
write(fname,’(i2.2,a,i2.2,a)’) hour,’h’,min,’m00.det’
full = pathname//fname
open(unit=1,file=full,status=’old’)
do 110 j=1,27
read(1,’(a)’) buffer

  110    continue
         do 120 j=1,ndes
           read(1,’(a)’) counts(j)
           read(counts(j)(29:),’(bn,i3)’) off(i,j)
  120    continue
         close(1)
100 continue
end
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APPENDIX J – Seed generation program

Main program
program seeds
implicit               double precision(a-h,o-z)
integer                 nor,ndes,ntime,ndays,nsec
double precision  precision
character*(*)       paramfile,outfile
parameter           (paramfile=’169parameter.dat’)
parameter           (outfile=’169seeds.out’)

open(unit=1,file=paramfile,status=’old’)
call readparam(1,nor,ndes,ntime,ndays,nsec,precision)
close(1)
open(unit=20,file=outfile,status=’old’)
write(20,*) ‘nor =’,nor
write(20,*) ‘ndes =’,ndes
write(20,*) ‘ndays =’,ndays
write(20,*) ‘nsec =’,nsec
write(20,*) ‘ntime =’,ntime
write(20,*) ‘precision =’,precision
call generate(nor,ndes,ntime,ndays,nsec,precision)
write(20,*) ‘exiting pgm’
close(20)
end

Associated subroutines
subroutine generate(nor,ndes,ntime,ndays,nsec,precision)
      integer                   nor,ndes,ntime,ndays,nsec
      double precision    precision
      integer                   origin(nor),destination(ndes)
      character*(*)        seed1,seed2,seed3,seed4,seed5,seed6
      parameter             (seed1=’169od1.dat’,seed2=’169od2.dat’)
      parameter             (seed3=’169od3.dat’,seed4=’169od4.dat’)
      parameter             (seed6=’169od6.dat’)

open(unit=2,file=seed1,status=’old’)
open(unit=3,file=seed2,status=’old’)
open(unit=4,file=seed3,status=’old’)
open(unit=5,file=seed4,status=’old’)
open(unit=8,file=seed6,status=’old’)

call seedone(2,nor,ndes,precision)
close(2)
call seedtwo(3,nor,ndes,ntime,ndays,precision)
close(3)
call seedthree(4,nor,ndes,ntime,ndays,precision)
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close(4)
call seedfour(5,nor,ndes,ntime,ndays,nsec,precision)
close(5)
call seedsix(8,nor,ndes,ntime,ndays,nsec,precision)
close(8)

write(20,*) ‘exiting generate...’

end
subroutine seedone(fnum,nor,ndes,prec)
      integer                 nor,ndes,fnum
      integer                 origin(nor),destination(ndes)
      integer                 i,j,sum(nor)

double precision  od1(nor,ndes),prec
      character*(*)       olist,dlist
      parameter            (olist=’169ori.dat’,dlist=’169des.dat’)

write(20,*) ‘inside seed one’
open(unit=11,file=olist,status=’old’)
open(unit=12,file=dlist,status=’old’)
call read1d(11,origin,nor)
call read1d(12,destination,ndes)
close(11)
close(12)

do 105 i=1,nor
sum(i) = 0
do 110 j=1,ndes

if (origin(i).lt.destination(j)) then
sum(i) = sum(i) + 1

end if
110    continue
105 continue

do 115 i=1,nor
do 120 j=1,ndes

if (origin(i).lt.destination(j)) then
od1(i,j) = 1.0d+0/sum(i)
call precise(od1(i,j),prec,od1(i,j))

else
od1(i,j) = -1.0d+0

end if
120    continue
115 continue

call checkOD(od1,nor,ndes)
call writeod(fnum,od1,nor,ndes)
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write(20,*) ‘exiting seed one’
end
subroutine seedtwo(fnum,nor,ndes,ntime,ndays,prec)
      integer                    nor,ndes,ntime,ndays,fnum
      double precision     od2(nor,ndes),prec
      integer                    origin(nor),destination(ndes)
      double precision    offramp(ndays,ntime,ndes)
      double precision    sumo(nor),sumd(ndes)
      character*(*)         olist,dlist,offile
      parameter              (olist=’169ori.dat’,dlist=’169des.dat’)
      parameter              (offile=’169offramp.dat’)

write(20,*) ‘inside seed two’
open(unit=21,file=olist,status=’old’)
open(unit=22,file=dlist,status=’old’)
open(unit=23,file=offile,status=’old’)

call read1d(21,origin,nor)
call read1d(22,destination,ndes)
call read3d(23,offramp,ndays,ntime,ndes)

close(21)
close(22)
close(23)

do 200 i=1,ndes
sumd(i) = 0.0d+0
do 210 j=1,ndays
do 220 k=1,ntime

sumd(i) = sumd(i) + offramp(j,k,i)

  220        continue
  210    continue
200 continue

do 230 i=1,nor
sumo(i) = 0.0d+0
do 240 j=1,ndes

if (origin(i).le.destination(j)) then
sumo(i) = sumo(i) + sumd(j)

end if
240    continue
230 continue

do 250 i=1,nor
do 260 j=1,ndes
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if (origin(i).lt.destination(j)) then
od2(i,j) = 1.0d+0*sumd(j)/sumo(i)
call precise(od2(i,j),prec,od2(i,j))

else
od2(i,j) = -1.0d+0

end if
260    continue
250 continue

call checkOD(od2,nor,ndes)
call writeod(fnum,od2,nor,ndes)
write(20,*) ‘exiting seed two’

end
subroutine seedthree(fnum,nor,ndes,ntime,ndays,prec)
      integer                 fnum,nor,ndes,ntime,ndays
      integer                 origin(nor),destination(ndes)

double precision  onramp(ndays,ntime,nor),offramp(ndays,ntime,ndes)

double precision  od31(nor,ndes),od32(nor,ndes),od33(nor,ndes)
double precision  diffod(nor,ndes),maxdiff,tol,sumtij
double precision  prod(nor),att(ndes),prec

      integer                 i,j,k,iter
      character*(*)       olist,dlist,onfile,offile
      parameter           (olist=’169ori.dat’,dlist=’169des.dat’)
      parameter           (onfile=’169onramp.dat’,offile=’169offramp.dat’)

write(20,*) ‘inside seed three’
iter = 0
open(unit=31,file=olist,status=’old’)
open(unit=32,file=dlist,status=’old’)
open(unit=33,file=onfile,status=’old’)
open(unit=34,file=offile,status=’old’)

call read1d(31,origin,nor)
call read1d(32,destination,ndes)
call read3d(33,onramp,ndays,ntime,nor)
call read3d(34,offramp,ndays,ntime,ndes)

close(31)
close(32)
close(33)
close(34)

tol = 1.0d+0
maxdiff = 100.0d+0
call initialize(nor,ndes,origin,destination,od31)
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call getsums(nor,ndes,ndays,ntime,onramp,offramp,prod,att)

write(20,*) ‘prod is...’
write(20,*) (prod(i),i=1,nor)
write(20,*) ‘att is...’
write(20,*) (att(i),i=1,ndes)

340 if (maxdiff.gt.tol) then
do 345 i=1,nor

do 350 j=1,ndes
sumtij = 0.0d+0
do 355 k=1,ndes
sumtij = sumtij + od31(i,k)

  355           continue
                od32(i,j) = prod(i)*od31(i,j)/sumtij
  350       continue
  345     continue

          do 360 i=1,nor
             do 365 j=1,ndes
                sumtij = 0.0d+0
                do 370 k=1,nor
                   sumtij = sumtij + od32(k,j)
  370           continue
                od33(i,j) = att(j)*od32(i,j)/sumtij
  365       continue
  360     continue

          maxdiff = 0.0d+0
          do 375 i=1,nor
             do 380 j=1,ndes
                diffod(i,j) = abs(od33(i,j)-od31(i,j))
                if (maxdiff.le.diffod(i,j)) then

maxdiff = diffod(i,j)

end if

  380        continue
  375     continue

          do 385 i=1,nor
             do 390 j=1,ndes
                od31(i,j) = od33(i,j)
  390        continue
  385     continue

          iter = iter +1
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          write(20,*) ‘iter =’,iter
          write(20,*) ‘post maxdiff =’,maxdiff

          goto 340
end if
call convert(nor,ndes,od31,prec)
call checkOD(od31,nor,ndes)
call writeod(fnum,od31,nor,ndes)
write(20,*) ‘exiting seed three...’
end

subroutine initialize(nor,ndes,origin,destination,od)

      integer          nor,ndes
      integer          origin(nor),destination(ndes)

double precision od(nor,ndes)
integer          i,j

do 300 i=1,nor
do 301 j=1,ndes

if (origin(i).lt.destination(j)) then
od(i,j) = 1.0d+0

else
od(i,j) = 0.0d+0

end if
301    continue
300 continue
end

subroutine getsums(nor,ndes,ndays,ntime,onramp,offramp,prod,att)

      integer                    nor,ndes,ntime,ndays
      double precision     onramp(ndays,ntime,nor),offramp(ndays,ntime,ndes)
      double precision     prod(nor),att(ndes)
      integer                    i,j,k
      double precision     orisum,dessum,sumdiff

orisum = 0.0d+0
dessum = 0.0d+0

do 310 i=1,ndays
do 311 j=1,ntime

do 312 k=1,nor
prod(k) = prod(k) + onramp(i,j,k)
orisum = orisum + onramp(i,j,k)

  312       continue
  311    continue
310 continue
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do 313 i=1,ndays
do 314 j=1,ntime

do 315 k=1,ndes
att(k) = att(k) + offramp(i,j,k)
dessum = dessum + offramp(i,j,k)

  315       continue
  314    continue
313 continue

write(20,*) ‘inside getsums’
write(20,*) ‘sumo =’,orisum,’sumd =’,dessum

sumdiff = orisum - dessum

      if (sumdiff.ne.0.0d+0) then
         do 316 i=1,ndes
            att(i) = att(i)*(1.0d+0 + sumdiff/dessum)
  316    continue
      end if

write(20,*) ‘exiting getsums...’

end
subroutine convert(nor,ndes,od,prec)
      integer                  nor,ndes
      double precision   od(nor,ndes),sum(nor),prec

do 321 i=1,nor
sum(i) = 0.0d+0
do 322 j=1,ndes
sum(i) = sum(i) + od(i,j)

322    continue
321 continue

do 323 i=1,nor

do 324 j=1,ndes

od(i,j) = od(i,j)/sum(i)
call precise(od(i,j),prec,od(i,j))

324    continue
323 continue

do 325 i=1,nor
do 326 j=1,ndes

if (od(i,j).eq.0.0d+0) then
od(i,j) = -1.0d+0

end if



J8

326    continue
325 continue
end

subroutine seedfour(fnum,nor,ndes,ntime,ndays,nsec,prec)

integer                 nor,ndes,ntime,ndays,nsec,fnum
double precision  od4(nor,ndes),prec
double precision  factor(nor,ndes),distance(nor,ndes),avgtrip
integer                  i,j,k

write(20,*) ‘inside fourth’
call calavg(ndays,ntime,nsec,nor,avgtrip)
write(20,*) ‘The avg trip length =’,avgtrip

call caldistance(nor,ndes,nsec,distance)
write(20,*) ‘The distance matrix’
call writeod(20,distance,nor,ndes)

call calfactor(nor,ndes,avgtrip,distance,factor)
write(20,*) ‘The factor matrix’
call writeod(20,factor,nor,ndes)

call calod(nor,ndes,factor,od4,prec)
call checkOD(od4,nor,ndes)
call writeod(fnum,od4,nor,ndes)

end
subroutine calod(nor,ndes,factor,odm,prec)

integer                  nor,ndes
double precision  factor(nor,ndes),odm(nor,ndes),sum(nor),prec
integer                  i,j
do 410 i=1,nor

sum(i) = 0.0d+0
do 415 j=1,ndes
odm(i,j)=0.0d+0
sum(i) = sum(i) + factor(i,j)

415   continue
410 continue

do 420 i=1,nor

do 425 j=1,ndes

odm(i,j) = factor(i,j)/sum(i)
call precise(odm(i,j),prec,odm(i,j))

425    continue
420 continue
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do 430 i=1,nor
do 435 j=1,ndes

if (odm(i,j).eq.0.0d+0) then
odm(i,j) = -1.0d+0

end if
435    continue
430 continue
end

subroutine calavg(ndays,ntime,nsec,nor,avgtrip)

      integer                   ndays,ntime,nsec,nor
      double precision   mainline(ndays,ntime,nsec),section(nsec,2)
      double precision   onrc(ndays,ntime,nor)
      double precision   avgtrip,sumtrip,sumppl
      integer                  i,j,k,m
      character*(*)        mainfile,onfile,secfile
      parameter             (mainfile=’169main.dat’,onfile=’169onramp.dat’)
      parameter             (secfile=’169sec.dat’)

open(unit=41,file=onfile,status=’old’)
open(unit=42,file=mainfile,status=’old’)
open(unit=43,file=secfile,status=’old’)
call read3d(41,onrc,ndays,ntime,nor)
call read3d(42,mainline,ndays,ntime,nsec)
call read2d(43,section,nsec,2)
close(41)
close(42)
close(43)

avgtrip = 0.0d+0
sumtrip = 0.0d+0
sumppl = 0.0d+0
do 450 i=1,ndays

do 451 j=1,ntime
do 452 k=1,nsec
sumtrip = sumtrip+mainline(i,j,k)*section(k,2)

452 continue
        do 453 m=1,nor
         sumppl = sumppl + onrc(i,j,m)
453 continue

451  continue
450 continue

avgtrip = sumtrip/sumppl

end
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subroutine caldistance(nor,ndes,nsec,distance)

integer                  nor,ndes,nsec
double precision  section(nsec,2),distance(nor,ndes)

      integer                 origin(nor),destination(ndes)
      integer                 i,j,k
      character*(*)      ofile,dfile,secfile
      parameter           (ofile=’169origin.dat’,dfile=’169destination.dat’)
      parameter           (secfile=’169sec.dat’)

open(unit=30,file=ofile,status=’old’)
open(unit=31,file=dfile,status=’old’)
open(unit=32,file=secfile,status=’old’)
call read1d(30,origin,nor)
call read1d(31,destination,ndes)
call read2d(32,section,nsec,2)
close(30)
close(31)
close(32)

write(20,*) ‘origin file’
write(20,*) (origin(i),i=1,nor)
write(20,*) ‘destination file’
write(20,*) (destination(i),i=1,ndes)

do 460 i=1,nor
do 461 j=1,ndes
distance(i,j) = 0.0d+0
if (origin(i).le.destination(j)) then

do 462 k=origin(i),destination(j)
distance(i,j) = distance(i,j)+section(k,2)

462         continue
end if

461  continue
460 continue

write(20,*) ‘section parameters’
write(20,*) (section(k,2),k=1,nsec)

end
subroutine calfactor(nor,ndes,avgtrip,distance,factor)
      integer                     nor,ndes
      double precision     term1,term2,term3,avgtrip
      double precision     factor(nor,ndes)
      real                         alpha,beta
      double precision    distance(nor,ndes)
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alpha = 3.0
beta = alpha/avgtrip
term1 = exp(alpha*log(beta))/exp(gammln(alpha))
write(20,’(a,e12.6)’) ‘term1 = ‘, term1
do 470 i=1,nor
do 471 j=1,ndes

term2 = exp((alpha-1)*log(real(distance(i,j))))
term3 = exp(real(distance(i,j))*(-1.0)*beta)
factor(i,j) = term1*term2*term3

471    continue
470 continue
end
Gammln – subroutine taken from Numerical Recipes in Fortran77.

subroutine seedsix(fnum,nor,ndes,ntime,ndays,nsec,prec)

      integer                   nor,ndes,nsec,ntime,ndays,fnum
      double precision   onramp(ndays,ntime,nor),prec
      double precision   mainline(ndays,ntime,nsec)
      double precision   offramp(ndays,ntime,ndes)
      double precision   turnper(ndays,ntime,nsec),od6(nor,ndes)
      double precision   avgtp(nsec), sum, avgonramp(nor),tempavg(nor)
      integer                  origin(nor),destination(ndes)
      character*(*)        onfile,offile,mainfile,olist,dlist
      parameter             (olist=’169origin.dat’,dlist=’169destination.dat’)
      parameter             (onfile=’169onramp.dat’,offile=’169offramp.dat’)
      parameter             (mainfile=’169main.dat’)
      integer                 i,j,k,secid

write(20,*) ‘inside seed six’
open(unit=61,file=onfile,status=’old’)
open(unit=62,file=offile,status=’old’)
open(unit=63,file=mainfile,status=’old’)
open(unit=64,file=olist,status=’old’)
open(unit=65,file=dlist,status=’old’)

call read3d(61,onramp,ndays,ntime,nor)
call read3d(62,offramp,ndays,ntime,ndes)
call read3d(63,mainline,ndays,ntime,nsec)
call read1d(64,origin,nor)
call read1d(65,destination,ndes)

close(61)
close(62)
close(63)
close(64)
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close(65)

do 603 i=1,ndays
do 605 j=1,ntime
do 610 k=1,nsec
turnper(i,j,k) = 0.0d+0

610   continue
605  continue
603 continue

do 612 i=1,ndays
do 615 j=1,ntime
do 620 k=1,ndes
secid = destination(k)
turnper(i,j,secid) = 1.0d+0*offramp(i,j,k)/mainline(i,j,secid)

620   continue
615  continue
612 continue

do 621 k=1,nsec
sum = 0.0d+0
do 622 i=1,ndays
do 623 j=1,ntime
sum = sum + turnper(i,j,k)

623    continue
622  continue

avgtp(k) = sum/(ntime*ndays)
621 continue

avgtp(nsec) = 1.0d+0
write(20,*) ‘the tp’
write(20,*) (avgtp(i),i=1,nsec)
do 624 i=1,nor
sum=0.0d+0
do 625 j=1,ndays
do 626 k=1,ntime

sum = sum + onramp(j,k,i)

  626       continue
  625    continue
         avgonramp(i) = sum/(ntime*ndays)
         tempavg(i) = avgonramp(i)
624 continue

do 630 i=1,nor
do 640 j=1,ndes

if (origin(i).le.destination(j)) then
od6(i,j) = avgtp(destination(j))*tempavg(i)
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tempavg(i) = tempavg(i) - od6(i,j)
else

od6(i,j) = -1.0d+0
end if
640    continue
630 continue

do 635 i=1,nor

do 636 j=1,ndes

sum = 0.0d+0
if (od6(i,j).ne.-1.0d+0) then
od6(i,j) = od6(i,j)/avgonramp(i)
call precise(od6(i,j),prec,od6(i,j))
end if

636  continue
635 continue

call checkOD(od6,nor,ndes)
call writeod(fnum,od6,nor,ndes)
write(20,*) ‘exiting seed6’

end

subroutine readparam(fnum,nor,ndes,ntime,ndays,nsec,precision)

      integer                  nor,ndes,ntime,ndays,nsec,fnum
      double precision   precision
      character*80        comment

read(fnum,*) comment
read(fnum,*) comment
read(fnum,*) nor
read(fnum,*) ndes
read(fnum,*) ntime
read(fnum,*) ndays
read(fnum,*) nsec
read(fnum,*) precision

end
subroutine read1d(fnum,array,row)
      integer             fnum,row,i
      integer             array(row)
      character*80   comment

read(fnum,*) comment
do 21 i=1,row
read(fnum,*) array(i)

21  continue
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end

subroutine read3d(fnum,matrix,ht,row,col)

integer                 fnum,row,ht,col,i,j,k
double precision  matrix(ht,row,col)
character*10        comment

do 30 i=1,ht
read(fnum,*) comment
do 31 j=1,row
read(fnum,*) (matrix(i,j,k),k=1,col)

31   continue
30  continue
end

subroutine writeod(fnum,od,nor,ndes)

integer                 fnum,nor,ndes
double precision  od(nor,ndes)
integer                  i,j

do 40 i=1,nor

write(fnum,*) (od(i,j),j=1,ndes)

40  continue
end

subroutine write1d(fnum,array,row)

      integer            fnum,row,i
      integer            array(row)

character*80  comment
do 50 i=1,row
write(fnum,*) array(i)

50  continue
end

subroutine write3d(fnum,matrix,ht,row,col)

double precision  fnum,row,ht,col,i,j,k
integer                  matrix(ht,row,col)

do 60 i=1,ht
write(fnum,*) ‘ht =’,ht
do 61 j=1,row
write(fnum,*) (matrix(i,j,k),k=1,col)

61    continue
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60  continue
end

subroutine read2d(fnum,matrix,row,col)

integer                  fnum,row,col,i,j,k
double precision  matrix(row,col)
character*10        comment

read(fnum,*) comment
do 62 j=1,row

read(fnum,*) (matrix(j,k),k=1,col)
62   continue
end

subroutine precise(num,prec,precnum)

double precision  num,prec,precnum
precnum = num - mod(num,prec)

end
subroutine checkOD(od,nor,ndes)
      integer                  nor,ndes,i,j
      double precision   od(nor,ndes)
      double precision   sum(nor)

do 70 i=1,nor
sum(i) = 0.0d+0
do 80 j=1,ndes-1

if (od(i,j).gt.0.0d+0) then
sum(i) = sum(i)+od(i,j)

end if
   80    continue
         od(i,ndes) = 1.0d+0 - sum(i)

70 continue

end




